
Received July 16, 2019, accepted July 29, 2019, date of publication August 6, 2019, date of current version August 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933491

Introducing SmartNICs in Server-Based
Data Plane Processing: The DDoS
Mitigation Use Case
SEBASTIANO MIANO 1, ROBERTO DORIGUZZI-CORIN 2, FULVIO RISSO 1,
DOMENICO SIRACUSA 2, AND RAFFAELE SOMMESE 3
1Department of Computer and Control Engineering, Politecnico di Torino, 10129 Torino, Italy
2CREATE-NET, Fondazione Bruno Kessler, 38123 Trento, Italy
3Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands

Corresponding author: Sebastiano Miano (sebastiano.miano@polito.it)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme through decentralised
technologies for orchestrated cloud-to-edge intelligence (DECENTER) under Grant 815141, and in part by the AddreSsing ThReats for
virtualIseD services (ASTRID) Project under Grant 786922.

ABSTRACT In the recent years, the complexity of the network data plane and their requirements in terms of
agility has increased significantly, with many network functions now implemented in software and executed
directly in datacenter servers. To avoid bottlenecks and to keep up with the ever increasing network speeds,
recent approaches propose to move the software packet processing in kernel space using technologies such
as eBPF/XDP, or to offload (part of it) in specialized hardware, the so called SmartNICs. This paper aims
at guiding the reader through the intricacies of the above mentioned technologies, leveraging SmartNICs to
build a more efficient processing pipeline and providing concrete insights on their usage for a specific use
case, namely, the mitigation of Distributed Denial of Service (DDoS) attacks. In particular, we enhance the
mitigation capabilities of edge servers by transparently offloading a portion of DDoS mitigation rules in the
SmartNIC, thus achieving a balanced combination of the XDP flexibility in operating traffic sampling and
aggregation in the kernel, with the performance of hardware-based filtering. We evaluate the performance
in different combinations of host and SmartNIC-based mitigation, showing that offloading part of the DDoS
network function in the SmartNIC can indeed optimize the packet processing but only if combined with
additional processing on the host kernel space.

INDEX TERMS eBPF, XDP, SmartNIC, NFV, DDoS.

I. INTRODUCTION
With the recent trend of ‘‘network softwarization’’, promoted
by emerging technologies such as Network Function Virtu-
alization (NFV) and Software Defined Networking (SDN),
system administrators of data center and enterprise networks
have started to replace dedicated hardware-based middle-
boxes with virtualized Network Functions (NFs) running on
commodity servers and end hosts [1]–[6]. This radical change
has facilitated the provisioning of advanced and flexible net-
work services, ultimately helping the system administrators
to cope with the rapid changes on service requirements and
networking workloads.

Unfortunately, the ever growing network capacity installed
in data center and enterprise networks requires a highly
flexible low-latency network processing, which is hardly

The associate editor coordinating the review of this manuscript and
approving it for publication was Vivek Kumar Sehgal.

achievable with standard packet processing mechanisms
implemented in the operating systems of servers and end-
hosts. Common solutions rely on kernel bypass approaches,
such as DPDK [7] and Netmap [8], which map the net-
work hardware buffers directly to user space memory, hence
bypassing the operating system. Although these technologies
bring an unquestionable performance improvement, they also
have two major limitations. First, they take the ownership of
one (or more) CPU cores, thus permanently stealing precious
CPU cycles to other tasks (NFs deployed on the servers,
or user applications running on the end hosts). Second, they
require to install additional kernel modules or to update the
network card driver, operations that are not always possible
in production networks.

Recent technologies such as eBPF [9], [10] and eXpress
Data Path (XDP) [11] offer excellent processing capabil-
ities without requiring to permanently allocate dedicated
resources in the host; eBPF programs combined with XDP

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 107161

https://orcid.org/0000-0002-1247-9640
https://orcid.org/0000-0002-8001-7835
https://orcid.org/0000-0001-6134-7890
https://orcid.org/0000-0002-5640-6507
https://orcid.org/0000-0003-3484-9259


S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

are executed at the earliest level of the Linux networking
stack, directly upon the receipt of a packet and immedi-
ately after the driver RX queues. Furthermore, eBPF/XDP
are included in vanilla Linux kernels, hence avoiding the
need to install custom kernel modules or additional device
drivers.

To further reduce the workload on the precious general-
purpose CPU cores of the servers, system administrators
have resumed the old idea of introducing programmable
intelligent networking adapters (a.k.a., SmartNICs) in their
servers [12], [13], hence combining the flexibility of soft-
ware network functions with the improved performance of
the hardware NIC acceleration. SmartNICs offer hardware
accelerators that enable to partially (or fully) offload packet
processing functions; examples include load balancing [14],
key-value stores [15] or more generic flow-level network
functions [16], [17]. On the other hand, SmartNICs may
present additional challenges due to their limited mem-
ory and computation capabilities compared to current
high-performance servers.

In this paper we consider the potential of exploiting Smart-
NICs on a specific use case, i.e., to mitigate volumetric DDoS
attacks, which are considered as one of the major threats in
today’s Internet, accounting for the 75.7% of the total DDoS
attacks [18]–[20]. While the detection of DDoS attacks is a
largely studied problem in the literature with several algo-
rithms proposed to rapidly and efficiently detect an ongoing
attack, in this paper we focus on the challenges related to the
DDoS attack mitigation; in particular, we explore how the
recent advances on the host data-plane acceleration can be
used to adequately handle the large speeds required by today’s
networks.

This paper provides the following contributions. First,
we analyze the various approaches that can be used to design
an efficient and cost-effective DDoS mitigation solution.
As generally expected, our results show that offloading the
mitigation task to the programmable NIC yields significant
performance improvements; however, we demonstrate also
that, due to the memory and compute limitations of current
SmartNIC technologies, a fully offloaded solution may lead
to deleterious performance. Second, as a consequence of the
previous findings, we propose the design and implementation
of a hybrid mitigation pipeline architecture that leverages the
flexibility of eBPF/XDP to handle different type of traffic and
attackers and the efficiency of the hardware-based filtering
in the SmartNIC to discard traffic from malicious sources.
Third, we present a mechanism to transparently offload part
of the DDoS mitigation rules into the SmartNIC, which takes
into account the most aggressive sources, i.e., the ones that
largely impact on the mitigation effectiveness.

This rest of the paper is structured as follows. Section II
presents a high-level overview of eBPF and XDP, together
with the SmartNIC and TC Flower, the flow classifier of the
Linux traffic control kernel subsystem. Section III analyzes
the different approaches that can be used to build an efficient
DDoS mitigation solution. Section IV presents the design of

an architecture that uses the above mentioned technologies to
both detect and mitigate DDoS attacks, including the offload-
ing algorithm adopted to install the rules into the SmartNIC
(Section IV-A.1), while keeping the flexibility and improved
performance of the in-kernel XDP packet processing. Finally,
Section V provides the necessary evidence to the previous
findings, Section VI briefly discusses the related works and
Section VII concludes the paper.

II. BACKGROUND
A. EXTENDED BERKELEY PACKET FILTER (EBPF)
The extended Berkeley Packet Filter (eBPF) is an enhanced
version of the original BPF virtual machine [21], originally
developed as kernel packet filtering mechanism for the BSD
operating system and used by tools such as tcpdump. Com-
pared to the original version, eBPF enables the execution
of custom bytecode (either interpreted or compiled just-in-
time) at various points of the Linux kernel in a safe manner.
Furthermore, thanks to the support from the Clang/LLVM
compiler, eBPF programs can be written in a restricted-C
language, which is then compiled into the corresponding
eBPF object file that can be loaded into the kernel through
the apposite bpf() system call. In addition to the improved
and enriched instruction set, eBPF offers several pre-defined
data structures (e.g., hash map, lru map, array) that can be
read/written from either kernel or userspace program, hence
providing the possibility to modify the behavior of an eBPF
program based upon dynamically changing operating condi-
tions.Moreover, it provides helper functions that can either be
used to implement complex features that may not be feasible
in the eBPF restricted-C, or to interact with kernel-level func-
tionalities. Finally, eBPF programs can be cascaded in order
to create larger service chains. The above additional capabil-
ities allow eBPF to provide its functions in a broad range of
kernel-level use cases, such as tracing, security and network-
ing. In particular, in the latter case, this special-purpose event-
driven virtual machine enables arbitrary packet processing on
incoming/outgoing traffic directly in the Linux kernel, with
the possibility to re-configure the existing eBPF programs
to adapt to the (dynamically changing) operating conditions.
This provides an unique option for flexibility and efficiency
that was not available before.

1) eXpress DATA PATH (XDP)
Networking eBPF programs can be attached to different
points of the Linux stack. Starting from Linux kernel v4.8,
the eXpress Data Path (XDP) provides the possibility to
execute those programs at the lowest level of the TCP/IP
stack, in the NIC driver itself, before the allocation of costly
kernel data structures (e.g., sk_buff), thus achieving the
best possible packet processing performance in the kernel
stack. As consequence, they represent the best choice to
detect and drop malicious packets with minimal consumption
of the host CPU resources, and will represent one of the key
technologies exploited in this paper.

107162 VOLUME 7, 2019



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

B. SMARTNICS
Smart Network Interface Cards (SmartNICs) are intelli-
gent adapters used to boost the performance of servers by
offloading (part of) the network processing workload from
the host CPU to the NIC itself [22]. Although the term
SmartNIC is being widely used in the industry and aca-
demic world, there is still some confusion over the precise
definition. We consider traditional NICs the devices that
provide several pre-defined offloaded functions (e.g., trans-
mit/receive segmentation offload, checksum offload) with-
out including a fully programmable processing path, e.g.,
which may involve the presence of a general-purpose CPU
on board. In our context, a SmartNIC is a NIC equipped with
a fully-programmable system-on-chip (SoC) multi-core pro-
cessor that is capable to run a fully-fledged operating system,
offering more flexibility and hence potentially taking care of
any arbitrary network processing task. This type of SmartNIC
can also be enhanced with a set of specialized hardware
functionalities that can be used to accelerate specific class
of functions (e.g., OpenvSwitch data-plane) or to perform
generic packet and flow-filtering. On the other hand, they
have limited compute and memory capabilities, making not
always possible (or efficient) to completely offload all types
of tasks. Furthermore, SmartNICs feature their own operating
system and therefore may have to be handled separately
from the host. For instance, offloading a network task to the
SmartNIC may require the host to have multiple interactions
with the card, such as to compile and inject the new eBPF
code, to execute additional commands (either on the host,
or directly on the card) to exploit the available features such
as configure hardware co-processors. Finally, no current stan-
dard exist to interact with SmartNICs, hence different (and
often proprierary) methods have to be implemented when the
support of several manufacturers is required.

C. TC FLOWER
The Flow Classifier is a feature of the Linux Traffic Con-
trol (TC) kernel subsystem that provides the possibility to
match, modify and apply different actions to a packet based
on the flow it belongs to. It offers a common interface for
hardware vendors to implement an offloading logic within
their devices; when a TC Flower rule is added, active NIC
drivers check if that rule is supported in hardware; in that case
the rule is pushed to the physical card, causing packets to be
directly matched in the hardware device, hence resulting in
greater throughput and a decrease of the host CPU usage.

TC Flower represents a promising technology that can hide
the differences between different hardware manufacturers,
but it not able (yet) to support all the high-level features that
may be available in modern SmartNICs.

III. DDoS MITIGATION: APPROACHES
Once a DDoS attack is detected, efficient packet dropping is
a fundamental part of a DDoS attack mitigation solution. In
a typical DDoS mitigation pipeline, a set of mitigation rules

are deployed in the server’s data plane to filter the malicious
traffic. The strategy used to block the malicious sources may
be determined by several factors such as the characteristics
of the server (e.g., availability of a SmartNIC, its hardware
capabilities), the characteristics of the malicious traffic (e.g.,
number of attackers) or the type and complexity of the rules
that are used to classify the illegitimate traffic. In particular,
we envision the following three approaches.

1) HOST-BASED MITIGATION
In this case all traffic (either malicious or legitimate) is pro-
cessed by the host CPU, which drops incoming packets that
match a given blacklist of malicious sources; this represents
the only viable option if the system lacks of any underlying
hardware speedup.

All the host-based mitigation techniques and tools used
today fall in two different macro-categories depending on
whether packets are processed at kernel or user-space level.

Focusing on Linux-based system, the first category
includes iptables and its derivatives, such as nftables,
which represent themain tools used tomitigate DDoS attacks.
It allows to express complex policies to the traffic, filter-
ing packets inside the netfilter subsystem. However,
the deep level in the networking stack where the packet pro-
cessing occurs causes poor performance when coping with
increasing speed of the today’s DDoS attacks, making this
solution practically unfeasible, as demonstrated in Section V.

As opposite to kernel-level processing, a multitude
of fast packet I/O frameworks relying on specialized
NIC/networking drivers and user-space processing have been
built over the past years. Examples such as Netmap [8],
DPDK [7], PF_RING ZC [23] rely on a small kernel compo-
nent that maps the NIC device memory directly to user space,
hence making it directly available to (network-specialized)
userland applications instead of relying on normal kernel
data-path processing. This approach provides huge perfor-
mance benefits compared to the standard kernel packet pro-
cessing but incurs in several non-negligible drawbacks. First
of all, these frameworks require to take the exclusive owner-
ship of the NIC, so that all packets received are processed by
the userspace application. This means that, in a DDoSmitiga-
tion scenario, packets belonging to legitimate sources have to
be inserted back into the kernel, causing unnecessary packet
copies that slow down the performance.1 Furthermore, these
frameworks require the fixed allocation of one (or more) CPU
cores to the above programs, independently from the presence
of an ongoing attack, hence reducing the performance-cost
ratio, as precious CPU resources are no longer available for
normal processing tasks (e.g., virtual machines).

XDP can be considered as a mix of the previous
approaches. It is technically a kernel-space framework,
although XDP programs can be injected from userspace to

1It is worth mentioning that Netmap has a better kernel integration com-
pared to DPDK; in fact, it is possible to inject packets back into the kernel
by just passing a pointer, without any copy. However, it is still subjected to
a high CPU consumption compared to eBPF/XDP.

VOLUME 7, 2019 107163



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

the kernel, after guaranteeing that all security properties are
satisfied. XDP programs are executed in the kernel con-
text but as early as possible, well before the netfilter
framework, hence providing an improvement of an order of
magnitude compared to iptables. The adoption of XDP to
implement packet filtering functionalities has grown over the
years; (i) its perfect integration with the Linux kernel makes
it more efficient to pass legitimate packets up to the stack,
(ii) its simple programming model makes it easy to express
customized filtering rules without taking care of low-level
details such as required by common user-space framework
and (iii) its event-driven execution gives the possibility to
consume resources only when necessary, providing a perfect
trade-off between performance and CPU consumption.

2) SmartNIC-BASED MITIGATION
If the server is equipped with a SmartNIC, an alternative
approach would be to offload the entire mitigation task to this
device. This enables to dedicate all the available resources
on the host CPU to the target workloads, operating only on
the legitimate traffic, freeing the host CPU from spending
precious CPU cycles in the mitigation.

However, although SmartNICs (by definition) support
arbitrary data path processing, they often differ on how this
can be achieved. Possible options range from running a cus-
tom executable, which should already be present on the card,
to dynamically inject a new program created on the fly, e.g.,
thanks to technologies such as XDP or P4, or to directly
compile those programs into the hardware device [24]. This
makes more cumbersome the implementation of offloading
features that run on cards from multiple manufacturers.

In our context, we envision two different options: (i) exploit
any hardware filter (if available) in the SmartNIC and, if the
number of blacklisted addresses exceeds the capability of
the hardware (which may be likely, given the typical size
of the above structure), block the rest of the traffic with a
custom dropping program (e.g., XDP) running on the NIC
CPU; (ii) block all the packets in software, running entirely
on the SmartNIC CPU, e.g., in case the card does not have
any hardware filtering capability. In both cases, the surviving
(benign) traffic is redirected to the host where the rest of
server applications are running. An evaluation of the above
possibilities will be carried out in Section V.

3) HYBRID (SmartNIC + XDP HOST)
An alternative strategy that combines the advantages of the
previous approaches would be to adopt a hybrid solution
where part of the malicious traffic is dropped by the Smart-
NIC (reducing the overhead on the host’s CPU) and the
remaining part is handled on the host, possibly leveraging the
much greater processing power available in modern server
CPUs compared to the one available in embedded devices.

In this scenario, we exploit the fixed hardware functions
commonly available in the current SmartNICs to perform
stateless matching on selected packet fields and apply simple
actions such as modify, drop or allow packets. To avoid

FIGURE 1. High-level architecture of the system.

redirecting all the traffic to the (less powerful) SmartNIC
CPU, we could let it pass through the above hardware tables
(where the match/drop is performed at line rate) and forward
the rest of the packets to the host, where the remaining part
of the mitigation pipeline is running. However, given the
limited number of entries often available in the above hard-
ware tables, which are not enough to contain the large num-
ber of mitigation rules needed during a large DDoS attack,
the whole list of dropping targets is partitioned between the
NIC and the host dropping program (e.g., XDP). This requires
specific algorithms to perform this splitting, which should
keep into account the difference in terms of supported rules
and their importance. Interesting, this scenario in which the
companion filtering XDP program is executed in the server
is also compatible with some traditional NICs that support
fixed hardware traffic filtering, such as Intel cards with Flow
Director.2 In this case, the mitigation module can use the
card-specific syntax (e.g., Flow Director commands) to con-
figure filtering rules, with the consequent decrease of the
filtering processing load in the host.

IV. ARCHITECTURE AND IMPLEMENTATION
This section presents a possible architecture that can be used
to compare the previous three approaches in the important use
case of the DDoS mitigation, enabling a fair comparison of
their respective strength and weaknesses in the implementa-
tion of an efficient and cost-effective mitigation pipeline. In
particular, we present the different components constituting
the proposed architecture (shown in Figure 1) and their role,
together we some implementation details that result from the
use of the assessed technologies.

A. MITIGATION
The first program encountered in the pipeline is the filtering
module, which matches the incoming traffic against the list
of blacklisted entries to drop packets coming from malicious

2The Flow Director is an Intel feature that supports advanced filters and
packet processing in the NIC; for this reason it is often used in scenarios
where packets are small and traffic is heavy (e.g., DoS attacks).

107164 VOLUME 7, 2019



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

sources; surviving packets are redirected to the host where
additional (more advanced) checks can be performed before
redirecting packets directly to the next program in the pipeline
(i.e., the feature extraction).

Although our architecture is flexible enough to instantiate
the filtering program in different locations (e.g., SmartNIC,
Host, and even partitioned across the two above), at the
beginning we instantiate an XDP filtering program in the
host in order to obtain the necessary traffic information and
decide the best mitigation strategy. If the userspace DDoS
mitigationmodule recognizes the availability of the hardware
offload functionality in the SmartNIC, it starts adding the
filtering rules into the hardware tables, causing malicious
packet to be immediately dropped in hardware. However,
since those tables have often a limited size (typically ∼1-
2K entries), we place the most active top-K malicious talkers
in the SmartNIC hardware tables, where K is the size of
those tables, while the remaining ones are filtered by the
XDP program running either on the SmartNIC CPU or on
the host, depending on a configuration option that enables us
to compare the results with different operating conditions.

1) OFFLOADING ALGORITHM
The selection of the top-K malicious talkers that are most
appropriate for hardware offloading is carried out by the rate
monitor module, which computes a set of statistics on the
dropped traffic and applies a hysteresis-based function to pre-
dict the advantages of possibly modifying the list of offloaded
rules that are active in the SmartNIC. In fact, altering this
list requires either computational resources or time (in our
card a single rule update may require up to 2 ms), which may
be unnecessary if the rank of the new top-K rules does not
effectively impact on the mitigation effectiveness.

The pseudo-code of our algorithm is shown in Listing 1.
First, it computes a list of the global top-K sources, which
contains both SmartNIC and XDP entries sorted in descend-
ing order according to their rate, and a second list containing
only the offloaded entries, i.e., the ones present in the Smart-
NIC hardware tables, which is arranged in ascending order.
Next, it computes the difference of the above lists, resulting
in two lists containing two disjoint set of elements; the first
list contains all the candidate rules that are not yet in the
SmartNIC and the second list includes the SmartNIC entries
that are not in the top-K anymore. At this point, starting from
the first element of the former list, it calculates the possible
benefit obtained by removing the first entry of the second
list (given by the ratio between the rate of the two entries)
and inserting this new entry in the SmartNIC; if the value
is greater than a certain threshold, the entry is moved into
the offloaded list and the algorithm continues with the next
entry. This threshold is adjusted according to the current
volume of DDoS traffic and it is inversely proportional to
it; this avoids unnecessary changes in the top-K SmartNIC
list when the traffic rate is low (compared to the maximum
achievable rate), which may bring a negligible improvement.
On the other hand, it increases the update likelihood when the

Algorithm 1 Offloading Algorithm
Input: K , the max # of supported SmartNIC entries
Output: υ ′k ← The list of SmartNIC entries.
1: γk ← TOP-K Global entries
2: υk ← TOP-K SmartNIC entries
3: sortDescending(γk )
4: sortAscending(υk )
5: γ ′k ← γk - υk F Remove already offloaded entries
6: υ ′k ← υk - γk F List of non TOP-K rules
7: for each γ ′i,k ∈ γ

′
k do

8: βi← offloadGain(γ ′i,k , υ
′
i,k )

9: if βi ≥ threshold then
10: υ ′k ← υ ′k − υ

′
i,k F Remove old entry from

offload list
11: υ ′k ← υ ′k + γ

′
i,k F Add new entry into offload list

12: end if
13: end for

volume of traffic is close to the maximum achievable rate; in
this scenario, where the system is overloaded, mitigating even
slightly more aggressive talkers may introduce substantial
performance benefits.

B. FEATURE EXTRACTION
Although not strictly belonging to the mitigation pipeline,
the feature extraction module monitors the incoming traffic
and collects relevant parameters required by the mitigation
algorithm (e.g., counting the number of packets for each
combination of source and destination hosts). Being placed
right after the mitigation module, it receives all the (pre-
sumed) benign traffic that has not been previously dropped
so that can be further analyzed and then passed up to the
target applications. XDP represents the perfect technology
to implement this component since it provides (i) the low
overhead given by the kernel-level processing and (ii) the
possibility to dynamically change the behavior of the system
by re-compiling and re-injecting (in the kernel) an updated
program when we require the extraction of a different set of
features. Moreover, XDP offers the possibility to export the
extracted information into specific key-value data structures
shared between the kernel and userspace (i.e., where the
DDoS attack detection algorithm is running) or to directly
send the entire packet up to userspace if a more in-depth
analysis is needed.

In the former case, data are stored in a per-CPU eBPF
hash map, which is periodically read by the userspace attack
detection application. Since multiple instances of the same
XDP program are executed in parallel on different CPU cores,
each one processing a different packet, the use of a per-CPU
map guarantees very fast access to data thanks to its per-core
dedicated memory; consequently data are never realigned
with the other caches present on other CPU cores, avoiding
the cost of cache synchronization. As result, each instance
of the feature extraction works independently, saving the

VOLUME 7, 2019 107165



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

statistics of each IP source/destination on its own private map.
In the latter case, a specific eBPF helper is used to copy
packets to a perf event ring buffer, which is then read by
the userspace application.

Analysis and Aggregation. Computed traffic statistics are
retrieved from each kernel-level hash-map, aggregated by
the companion userspace application and saved in memory
for further processing. However, this process was found to
be relatively slow; our tests report an average of 30µs to
read a single entry from the eBPF map, requiring more than
ten seconds to process the entire dataset in case of large
DDoS attacks (e.g., ∼300K entries). In fact, eBPF does not
provide any possibility to read an entire map within a single
bpf() system call, hence requiring to read each single value
separately. As consequence, to guarantee coherent data to the
userspace detection application, we should lock the entire
table while reading the values, but this would result in the
impossibility for the kernel to process the current incoming
traffic for a considerable amount of time.

To avoid the above problem, we adopted a swappable dual-
map approach, in which the userspace application reads data
from a first eBPF map that represents a snapshot of the traffic
statistics at a given time, while the XDP program computes
the traffic information for the incoming packets received
in the the previous timespan, and saved in a second map.
This process is repeated every time the periodic user-space
detection process is triggered, hence allowing the detection
algorithm to always work with consistent data. From the
implementation point of view, we opted for a swappable dual-
program approach instead of a swappable dual-map because
of its reduced swapping latency.We create two feature extrac-
tion XDP programs, each one with its own hash-map, and
swap them atomically by asking the filtering module to
dynamically update the address of the next program in the
pipeline, which basically means updating the target address
of an assembly jump instruction.

C. DETECTION
The identification of a DDoS attack is performed by the
detection module, which operates on the traffic statistics
presented in the previous section and exploits the retrieved
information to identify the right set of malicious sources,
which are then inserted in the blacklist map used by the
filtering module to drop the traffic.
Since the selection of the best mitigation algorithm is out of

the focus of this paper, we provide here only a small descrip-
tion of the possible choices that, however, need to be carefully
selected depending on the characteristics of the environment
and the type of workloads running on the end-hosts. In fact,
different approaches are available [19], [25] falling in two
main categories: (i) anomaly-based detection mechanisms
such as entropy-based approaches [26]–[28], used to detect
variations in the distribution of traffic features observed in
consecutive timeframes and (ii) signature-based approaches
that employ a-priori knowledge of attack signatures to match
incoming traffic and detect intrusions.

It is important to note that the type of detection algo-
rithm may influence the exported traffic information on the
feature extraction module; however, thanks to the excellent
programmability of XDP we can change the behavior of the
program without impacting on the rest of the architecture.

D. RATE MONITOR
Sometimes, a given detection algorithm may erroneously
detect some legitimate sources as attackers. To counter this
situation, a specific mechanism is used to eliminate from
the blacklist a source that is no longer considered malicious,
e.g., because it was considered an attacker by mistake or
because it does no longer participate to the attack. This task is
performed by the rate monitor, which starts from the global
list of blacklisted addresses, sorted according to their traffic
volume, and examines the entries that are at the bottom of the
list (i.e., the ones sending less traffic), comparing them with a
threshold value; if the current transmission rate of the source
under consideration is below the threshold, defined as the
highest rate of packets with the same source observed under
normal network activity, it is removed from the blacklist. In
case the host is removed by mistake, the detection algorithm
will re-add to the list ofmalicious sources in the next iteration.

V. PERFORMANCE EVALUATION
This section provides an insight of the benefits of SmartNICs
in the important use case of DDoSmitigation. First, it outlines
the test environment and the evaluation metrics; then, exploit-
ing the previously described architecture, it analyzes different
approaches that exploit SmartNICs and/or other recent Linux
technologies such as eBPF/XDP for DDoS mitigation, com-
paring with the performance achievable with commonly used
Linux tools (i.e., iptables).

A. TEST ENVIRONMENT
Our testbed includes a first machine used as packet generator,
which creates amassiveDDoS attackwith an increasing num-
ber of attack sources, and a second server running the DDoS
mitigation pipeline. Both servers are equipped with an Intel
Xeon E3-1245 v5 with a quad-core CPU@3.50GHz, 8MB of
L3 cache and two 16GBDDR4-2400 RAMmodules, running
Ubuntu 18.04.2 LTS and kernel 4.15. The two machines are
linked with two 25Gbps SmartNICs, with each port directly
connected to the corresponding one of the other server.

We used Pktgen-DPDK v3.6.4 and DPDK v19.02 to gen-
erate the UDP traffic (with small 64B packets) simulating
the attack. We report the dropping rate of the system and
the CPU usage, which are the two fundamental parameters
to keep into account during an attack. We also measure the
capability of the server to perform real work (i.e., serve
web pages) while under attack, comparing the results of the
different mitigation approaches. In this case, the legitimate
traffic is generated using the open-source benchmarking tool
weighttp, which creates a high number of parallel TCP
connections towards the device under test; in this case we
count only the successfully completed TCP sessions.

107166 VOLUME 7, 2019



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

FIGURE 2. Dropping rate with an increasing number of attackers. (a):
Uniformly distributed traffic; (b): Traffic normally distributed among all
sources.

B. MITIGATION PERFORMANCE
The first test measures the ability of the server to react to
massive DDoS attacks that involve an increasing number
of sources (i.e., bots), showing the performance of different
mitigation approaches in terms of dropping rate (Mpps) and
CPU consumption.We generate 64BUDP packets at line-rate
at 25Gbps (i.e., 37.2Mpps); we consider both a scenario
where the traffic is uniformly distributed among all sources
(Figure 2a) and a situation where the traffic generated by
each source follows a Gaussian distribution (Figure 2b). In
addition, we report the CPU consumption for the first test
(uniform distribution) in Figure 3.

1) iptables
One of the most common approaches for DDoS attacks mit-
igation relies on iptables, a Linux tool anchored to the
netfilter framework that can filter traffic, perform network
address translation and manipulate packets. For this test we
deployed all the rules containing the source IPs to drop in
the PREROUTING netfilter chain, which provides higher effi-
ciency compared to the more common INPUT chain, which
is encountered later in the networking stack. Figure 2a and 2b
show how the dropping rate of iptables are rather limited,

FIGURE 3. CPU usage of the different mitigation approaches under a
simulated DDoS attack (uniform distribution).

around 2.5-4.5Mpps, even with a relatively small number
of attack sources, making this solution incapable of dealing
with the massive DDoS attacks under consideration. This is
mainly given by the linear matching algorithm used by ipta-
bles, whose performance degrade rapidly when an increasing
number of rules are used, leading to a throughput almost
equal to zero with more than 4K rules. The CPU consumption
(Figure 3) confirms this limitation; using iptables to mitigate
large DDoS attacks would saturate the CPUs of the system,
which would be occupied discarding traffic rather then exe-
cuting the target services.

2) HOST-BASED MITIGATION
Compared to iptables, XDP intercepts packets at a lower
level of the stack, right after the NIC driver. This test runs
the entire mitigation pipeline in XDP without any help from
the SmartNIC, which simply redirects all the packets to the
host where the XDP program is triggered. The dropping
efficiency of XDP is much higher than iptables, being able to
discard ∼26Mpps up to 1K sources, and still ∼10Mpps with
128K attackers, using all CPU cores of the target machine.3

This performance degradation is due to the eBPF map used
(BPF_HASH), in which the lookup time, needed to match
the IP source of the current packet against the blacklist,
is influenced by the total number of map entries.

3) SmartNIC-BASED MITIGATION
In this case the mitigation pipeline is executed entirely on
the SmartNIC. We performed a first test where the attack
is mitigated only through an XDP filtering program in the
SmartNIC CPU, without any help from the hardware filter.
Results shown in Figures 2a and 2b confirm a performance
degradation compared to the host-based mitigation due to the
slower CPU of the NIC, balanced by the fact that we do not
consume any CPU cycles in the host (Figure 3), hence leaving
room for other applications.

A second test exploits a mixture of hardware filtering and
XDP-based software filtering in the card. Results demon-
strate that for relatively small attack sources (less than 512),

3In our case, the limiting factor is our Intel Xeon E3-1245 CPU, which is
able to drop around 10Mpps within a single core, as opposed to other (more
powerful) CPUs that are able to achieve higher rates (e.g., 24Mpps [11]).

VOLUME 7, 2019 107167



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

the dropping rate is equal to the maximum achievable rate
(37.2Mpps); in fact, the first K rules (where K=512 in our
card) are inserted in the SmartNIC hardware tables, causing
all the packets to be dropped at line rate. However, when
dealing with larger attacks (greater than 1K), the dropping
rate immediately decreases, since an increasing number of
entries stay outside the SmartNIC hardware tables; as a con-
sequence, the dropping rate is influenced by the performance
of the XDP program running in the SmartNIC CPU. This
approach may be reasonable when the DDoS attack rate does
not exceed the maximum achievable dropping rate in the
SmartNIC CPU, which in our case is approximately 15Mpps;
handling more massive attacks will cause the SmartNIC to
drop packets without processing, with an higher chances to
drop also legitimate traffic, as highlighted in Section V-C.

4) HYBRID (NIC HARDWARE TABLES + XDP HOST)
In this case the offloading algorithm splits the mitigation
pipeline between the SmartNIC hardware tables and the
XDP filtering program running in the host. We notice that
for large attacks, the dropping rate is considerably higher
than the HW + XDP SmartNIC case, thanks to the higher
performance of the host CPU compared to the SmartNIC
one. Although hardware filtering is available also on some
‘‘traditional’’ NICs (e.g., Intel with Flow Director), we were
unable to implement the hybrid approach in them because
of the unavailability of hardware counters to measure the
dropped packets for each source, which are required by our
algorithm; however, we cannot exclude that other mitigation
algorithms can leverage the hardware speed-up provided by
the above cards as well.

5) FINAL CONSIDERATIONS
Figures 2a and 2b confirm a clear advantage of the hardware
offloading, which is even more evident depending on the
distribution of the traffic.

For instance, in the second scenario (Figure 2b, with some
sources generating more traffic than others) we can reach
even higher dropping performance, thanks to the offloading
algorithm that places the top-Kmalicious talkers in the Smart-
NIC, resulting in more traffic dropped in hardware. Also
the CPU consumption shown in Figure 3 confirms the clear
advantage of the offloading, particularly when most of the
traffic is handled by the hardware of the SmartNIC, hence
avoiding the host CPU to take care of the above portion of
malicious traffic. It is worth noticing that the case where a
server has to cope with a limited number of malicious sources
may be rather common, as the incoming traffic in datacenters
may be balanced across multiple servers (backends), each one
being asked to handle a portion of the connections and, hence,
also a subset of the current attackers.

C. EFFECT ON LEGITIMATE TRAFFIC
This test evaluates the capability of the system to perform
useful work (e.g., serve web pages) even in presence of a
DDoS attack. We generate 64Bytes UDP packets towards the

FIGURE 4. Number of successfully completed HTTP requests/s under
different load rates of a DDoS attack carried out by (a) 1K attackers and
(b) 4K attackers.

server simulating different attack rates and number of attack-
ers, while a weighttp client generates 1M HTTP requests
(using 200 concurrent clients) towards the nginx server
running on the target device. The capability of the server to
perform real work is reported by the number of successfully
completed requests/s, with a timeout of 5 seconds, varying
the rate of DDoS traffic.

Results, depicted in Figures 4a and 4b show the perfor-
mance with 1K and 4K attackers respectively. In the first
case, both hardware-based solutions reach the same number
of connection/s, since almost all entries are dropped by the
hardware, leaving the host’s CPU free to perform real work.
The same behavior can be noticed when the mitigation is per-
formed entirely on the SmartNIC CPU; in this case, the host’s
CPU is underused, achieving the maximum number of HTTP
requests/s that the DUT is able to handle. However, the per-
formance immediately drop when the attack rate exceeds
15Mpps, which is the maximum rate that the SmartNIC CPU
sustain; in such scenario, NIC queues become rapidly full,
hence dropping packets without going through the mitigation
pipeline and increasing the chance to drop also legitimate
traffic. With respect to the XDP Host mitigation, we notice
that the number of connections/s is initially lower, in presence

107168 VOLUME 7, 2019



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

of small attack rates, compared to the SmartNIC-based solu-
tion, since the host’s CPU has to handle the HTTP requests
and, at the same time, execute the XDP program. However,
when the rate of the attack grows, it will continue to handle
an adequate number of connections/s until 25Mpps, which
is the maximum rate that the host XDP program is able to
handle. Finally, iptables-based mitigation results unfeasible
with large attack sources because of its very poor processing
efficiency, severely impacting on the capability of the server
to handle the legitimate traffic.

The same analysis is valid for larger attacks (e.g., 4K
sources); the main difference here is that the HW + XDP
Host solution performs significantly better in this case, thanks
to the higher processing capabilities of the host’s CPU com-
pared to the SmartNIC ones.

VI. RELATED WORK
The advantages of using XDP to filter packets at high rates
have been largely discussed and demonstrated [29], [30]; sev-
eral companies (e.g., Facebook, Cloudflare) have integrated
XDP in their data center networks to protect end hosts from
unwanted traffic, given the enormous benefits from both
filtering performance and low resource consumption. In par-
ticular, in [31] Cloudflare presented a DDoSmitigation archi-
tecture that was initially based on kernel bypass, to overcome
the performance limitations of iptables, and classical BPF
to filter packets in userspace. However they shifted soon
to an XDP-based architecture called L4Drop [32] that per-
forms packet sampling and dropping within an XDP program
itself. Our approach is slightly different; we use an XDP
program to extract the relevant packet headers from all the
received traffic, instead of sending the entire samples to
the userspace detection application and we consider simpler
filtering rules, which are needed to deal with the SmartNIC
hardware limitations. Finally, we consider in our architecture
the use of SmartNICs to improve the packet processing,
which introduces additional complexity (e.g., select rules to
offload), which are not needed in a host-based solution. In this
direction, [33] analyzed and proposed a hybrid architecture
that use SmartNIC to improve VNFs processing capabilities;
however, to the best of our knowledge, this work is the first
that analyzes and proposes a complete hardware/software
architecture for the DDoS mitigation use case.

VII. CONCLUSION
Given the sheer increase in the amount of traffic handled
by modern datacenters, SmartNICs represent a promising
solution to offload part of the network processing to dedi-
cated (and possibly more optimized) components. This paper
presents an analysis of the various approaches that could be
adopted to introduce SmartNICs in server-based data plane
processing, assessing the achievable results in particular for
the DDoS mitigation use case under different alternatives.
In this respect, the paper describe a solution that combines
SmartNICswith other recent technologies such as eBPF/XDP
to handle large amounts of traffic and attackers. The key

aspect of our solution is the adaptive hardware offloading
mechanism, which partitions the attacking sources to be fil-
tered among SmartNIC and/or host, smartly delegating the
filtering of the most aggressive DDoS sources to former.

According to our experiments, the best approach is a com-
bination of hardware filtering on the SmartNIC and XDP
software filtering on the host, which results more efficient
in terms of dropping rate and CPU usage. In fact, running
part of the filtering pipeline on the SmartNIC CPU would
bring to inferior dropping performance due to its slower CPU,
resulting in a lower capability to cope with large and massive
DDoS attacks.

Our findings suggest that current SmartNICs can help
mitigating the network load on congested servers, but may
not represent a turn-key solution. For instance, an effective
SmartNIC-based solution for DDoS attacks may require the
presence of a DDoS-aware load balancer that distributes
incoming datacenter traffic in a way to reduce the amount
of attackers landing on each server, whose number should
be compatible with the size of the hardware tables of the
SmartNIC. Otherwise, the solution may require the software
running on the SmartNICs to cooperate with other compo-
nents running on the host, reducing the effectiveness of the
solution in terms of saved resources in the servers.

REFERENCES
[1] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,

L. Koromilas, and G. O’Shea, ‘‘Enabling end-host network functions,’’
in Proc. ACM Conf. Special Interest Group Data Commun. (SIGCOMM),
New York, NY, USA, 2015, pp. 493–507. [Online]. Available: http://doi.
acm.org/10.1145/2785956.2787493

[2] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, ‘‘Fabric:
A retrospective on evolving SDN,’’ inProc. 1stWorkshopHot Topics Softw.
Defined Netw. (HotSDN), New York, NY, USA, 2012, pp. 85–90. [Online].
Available: http://doi.acm.org/10.1145/2342441.2342459

[3] Y. Li, D. Wei, X. Chen, Z. Song, R. Wu, Y. Li, X. Jin, and W. Xu,
‘‘DumbNet: A smart data center network fabric with dumb switches,’’ in
Proc. 13th EuroSys Conf., New York, NY, USA, 2018, Art. no. 9. [Online].
Available: http://doi.acm.org/10.1145/3190508.3190531

[4] T. Karagiannis, R. Mortier, and A. Rowstron, ‘‘Network exception han-
dlers: Host-network control in enterprise networks,’’ in Proc. ACM SIG-
COMM Conf. Data Commun., New York, NY, USA, 2008, pp. 123–134.
[Online]. Available: http://doi.acm.org/10.1145/1402958.1402973

[5] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
‘‘Extending networking into the virtualization layer,’’ in Proc. HotNets,
2009, pp. 1–6.

[6] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, ‘‘Understanding PCIe performance for end host
networking,’’ in Proc. Conf. ACM Special Interest Group Data
Commun. (SIGCOMM), New York, NY, USA, 2018, pp. 327–341.
[Online]. Available: http://doi.acm.org/10.1145/3230543.3230560

[7] (Jun. 2018). Data Plane Development Kit. [Online]. Available:
https://www.dpdk.org/

[8] L. Rizzo, ‘‘Netmap: A novel framework for fast packet I/O,’’ in Proc.
21st USENIX Secur. Symp. (USENIX Secur.), 2012, pp. 101–112.

[9] Cilium Authors. (Jul. 2018). BPF and XDP Reference Guide. [Online].
Available: https://cilium.readthedocs.io/en/latest/bpf/

[10] M. Fleming. (Dec. 2017). A Thorough Introduction to EBPF. [Online].
Available: https://lwn.net/Articles/740157/

[11] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, ‘‘The express data path: Fast pro-
grammable packet processing in the operating system kernel,’’ in Proc.
14th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT), New York,
NY, USA, 2018, pp. 54–66. [Online]. Available: http://doi.acm.org/10.
1145/3281411.3281443

VOLUME 7, 2019 107169



S. Miano et al.: Introducing Smartnics in Server-Based Data Plane Processing: The DDoS Mitigation Use Case

[12] D. Firestone et al., ‘‘Azure accelerated networking: SmartNICs in the
public cloud,’’ in Proc. 15th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), Renton, WA, USA, 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[13] A. Caulfield, P. Costa, and M. Ghobadi, ‘‘Beyond smartNICs: Towards
a fully programmable cloud,’’ in Proc. IEEE Int. Conf. High Perform.
Switching Routing, 2018, pp. 1–6.

[14] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, ‘‘Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,’’ in
Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
New York, NY, USA, 2017, pp. 15–28. [Online]. Available: http://doi.
acm.org/10.1145/3098822.3098824

[15] G. Siracusano and R. Bifulco, ‘‘Is it a SmartNIC or a key-value store?:
Both!’’ in Proc. SIGCOMM Posters Demos, New York, NY, USA, 2017,
pp. 138–140. [Online]. Available: http://doi.acm.org/10.1145/3123878.
3132014

[16] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani,
V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, F. Huici,
and G. Siracusano, ‘‘FlowBlaze: Stateful packet processing in hard-
ware,’’ in Proc. 16th USENIX Symp. Netw. Syst. Design Implement.
(NSDI). Boston, MA, USA, 2019, pp. 531–548. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/pontarelli

[17] Y. G. Moon, I. Park, S. Lee, and K. S. Park, ‘‘Accelerating flow
processing middleboxes with programmable NICs,’’ in Proc.
9th Asia–Pacific Workshop Syst. (APSys), New York, NY, USA, 2018,
pp. 14:1–14:3. [Online]. Available: http://doi.acm.org/10.1145/3265723.
3265744

[18] Arbor Networks. Worldwide Infrastructure Security Report. Accessed:
Mar. 17, 2019. [Online]. Available: https://pages.arbornetworks.com/
rs/082-KNA-087/images/13th_Worldwide_Infrastructure_Security_Report.
pdf

[19] A. Srivastava, B. B. Gupta, A. Tyagi, A. Sharma, and A. Mishra, ‘‘A recent
survey onDDoS attacks and defensemechanisms,’’ inAdvances in Parallel
Distributed Computing, D. Nagamalai, E. Renault, and M. Dhanuskodi,
Eds. Berlin, Germany: Springer, 2011, pp. 570–580.

[20] E. Alomari, S. Manickam, B. B. Gupta, S. Karuppayah, and R. Alfaris,
‘‘Botnet-based distributed denial of service (DDoS) attacks on Web
servers: Classification and art,’’ 2012, arXiv:1208.0403. [Online]. Avail-
able: https://arxiv.org/abs/1208.0403

[21] S. McCanne and V. Jacobson, ‘‘The BSD packet filter: A new
architecture for user-level packet capture,’’ in Proc. USENIX Win-
ter Conf., Berkeley, CA, USA, 1993, p. 259. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267303.1267305

[22] N. Tausanovitch. (Sep. 2016). What Makes a Nic a SmartNIC, and Why
is it Needed? [Online]. Available: https://www.netronome.com/blog/what-
makes-a-nic-a-smartnic-and-why-is-it-needed/

[23] Ntop. PF_RING ZC (Zero Copy). Accessed: Mar. 17, 2019. [Online].
Available: https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-
zczero-copy/

[24] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, ‘‘Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN,’’ in Proc. ACM
SIGCOMMConf., New York, NY, USA 2013, pp. 99–110. [Online]. Avail-
able: http://doi.acm.org/10.1145/2486001.2486011

[25] P. Kamboj, M. C. Trivedi, V. K. Yadav, and V. K. Singh, ‘‘Detec-
tion techniques of DDoS attacks: A survey,’’ in Proc. 4th IEEE Uttar
Pradesh Sect. Int. Conf. Elect., Comput. Electron. (UPCON), Oct. 2017,
pp. 675–679.

[26] S. Behal and K. Kumar, ‘‘Detection of DDoS attacks and flash events using
novel information theory metrics,’’ Comput. Netw., vol. 116, pp. 96–110,
Apr. 2017.

[27] S. Behal and K. Kumar, ‘‘Detection of DDoS attacks and flash events
using information theory metrics–an empirical investigation,’’ Comput.
Commun., vol. 103, pp. 18–28, May 2017.

[28] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, ‘‘An empirical
evaluation of information metrics for low-rate and high-rate DDoS attack
detection,’’ Pattern Recognit. Lett., vol. 51, pp. 1–7, Jan. 2015.

[29] B. Blanco and Y. Lu. (Oct. 2016). Leveraging XDP for Programmable,
High Performance Data Path in Openstack. [Online]. Available:
https://www.openstack.org/videos/barcelona-2016/leveraging-express-
data-path-xdp-for-programmable-high-performance-data-path-in-
openstack

[30] H. Zhou, Nikita, and M. Lau. (Aug. 2017). XDP Production Usage:
DDoS Protection and L4LB. [Online]. Available: https://www.netdevconf.
org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

[31] G. Bertin, ‘‘XDP in practice: Integrating XDP into our DDoS mitigation
pipeline,’’ in Proc. Tech. Conf. Linux Netw., Netdev, 2017, pp. 1–5.

[32] A. Fabre. L4Drop: XDP DDoS Mitigations. Accessed: Jun. 17, 2019.
[Online]. Available: https://blog.cloudflare.com/l4drop-xdp-ebpf-based-
ddos-mitigations/

[33] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift,
and T. V. Lakshman, ‘‘UNO: Uniflying host and smart NIC offload
for flexible packet processing,’’ in Proc. Symp. Cloud Computing
(SoCC), New York, NY, USA, 2017, pp. 506–519. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3132252

SEBASTIANO MIANO received the master’s
degree in computer engineering from the
Politecnico di Torino, Italy, in 2015, where he is
currently pursuing the Ph.D. degree. His research
interests include programmable data planes,
software-defined networking, and high-speed
network function virtualizations.

ROBERTO DORIGUZZI-CORIN received the
M.Sc. degree in mathematics from the University
of Trento, in 1996. He is currently a Researcher
with Fondazione Bruno Kessler, Trento, Italy.
He is currently pursuing the Ph.D. degree with the
University of Bologna, Italy. His main research
interests include network softwarisation, network
security, and Linux-embedded systems.

FULVIO RISSO received the M.Sc. and Ph.D.
degrees in computer engineering from the
Politecnico di Torino, Italy, in 1995 and 2000,
respectively, where he is currently an Associate
Professor. He has coauthored more than 100 sci-
entific papers. His research interests include
high-speed and flexible network processing,
edge/fog computing, software-defined networks,
and network functions virtualization.

DOMENICO SIRACUSA received the M.Sc.
degree in telecommunication engineering and the
Ph.D. degree in information technology from the
Politecnico di Milano, in 2008 and 2012, respec-
tively. He is the Head of the RiSING Research
Unit, CREATE-NET, Fondazione Bruno Kessler.
He has coauthored over 80 scientific papers. His
research interests include SDN/NFV, cloud and
fog computing, security and robustness.

RAFFAELE SOMMESE received theM.Sc. degree
in computer engineering from the Politecnico di
Torino, in 2018. He is currently pursuing the Ph.D.
degree with the University of Twente.

His research interests include DNS DDoS secu-
rity, programmable high-speed dataplanes, Smart-
NIC technologies, and network measurements.

107170 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	EXTENDED BERKELEY PACKET FILTER (EBPF)
	eXpress DATA PATH (XDP)

	SMARTNICS
	TC FLOWER

	DDoS MITIGATION: APPROACHES
	HOST-BASED MITIGATION
	SmartNIC-BASED MITIGATION
	HYBRID (SmartNIC + XDP HOST)


	ARCHITECTURE AND IMPLEMENTATION
	MITIGATION
	OFFLOADING ALGORITHM

	FEATURE EXTRACTION
	DETECTION
	RATE MONITOR

	PERFORMANCE EVALUATION
	TEST ENVIRONMENT
	MITIGATION PERFORMANCE
	iptables
	HOST-BASED MITIGATION
	SmartNIC-BASED MITIGATION
	HYBRID (NIC HARDWARE TABLES + XDP HOST)
	FINAL CONSIDERATIONS

	EFFECT ON LEGITIMATE TRAFFIC

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	SEBASTIANO MIANO
	ROBERTO DORIGUZZI-CORIN
	FULVIO RISSO
	DOMENICO SIRACUSA
	RAFFAELE SOMMESE


