
Doctoral Dissertation
Doctoral Program in Computer and Control Enginering (32nd cycle)

Rethinking Software Network
Data Planes in the Era of

Microservices

Sebastiano Miano
* * * * * *

Supervisor
Prof. Fulvio Risso

Doctoral examination committee
Prof. Antonio Barbalace, Referee, University of Edinburgh (UK)
Prof. Costin Raiciu, Referee, Universitatea Politehnica Bucuresti (RO)
Prof. Giuseppe Bianchi, University of Rome “Tor Vergata” (IT)
Prof. Marco Chiesa, KTH Royal Institute of Technology (SE)
Prof. Riccardo Sisto, Polytechnic University of Turin (IT)

Politecnico di Torino
2020

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Sebastiano Miano

Turin, 2020

www.creativecommons.org

Summary

With the advent of Software Defined Networks (SDN) and Network Functions
Virtualization (NFV), software started playing a crucial role in the computer net-
work architectures, with the end-hosts representing natural enforcement points for
core network functionalities that go beyond simple switching and routing. Recently,
there has been a definite shift in the paradigms used to develop and deploy server
applications in favor of microservices, which has also brought a visible change in the
type and requirements of network functionalities deployed across the data center.
Network applications should be able to continuously adapt to the runtime behav-
ior of cloud-native applications, which might regularly change or be scheduled by
an orchestrator, or easily interact with existing “native” applications by leveraging
kernel functionalities - all of this without sacrificing performance or flexibility.

In this dissertation, we explore the design space of software packet processing
applications within the new “cloud-native” era, and we propose a novel paradigm to
design, run, and manage software network functions that follow the same approach
of micro-services. We present Polycube, a software framework that enables the
creation of efficient, modular, and dynamically reconfigurable in-kernel networking
components available with vanilla Linux. Polycube exploits the extended Berkeley
Packet Filter (eBPF) framework to execute the data plane of those network func-
tions and introduces a set of additional components and common APIs that make it
easier to develop and manage those services. We design and evaluate the use of this
paradigm through bpf-iptables, a clone of iptables characterized by improved
performance and scalability. Then, we explore the possibility of enhancing the ca-
pabilities of end-hosts through the use of programmable network interface cards
(SmartNICs) to offload partially (of fully) existing packet processing applications,
in particular in the domain of DDoS Mitigation. In the last part of the dissertation,
we present Kecleon, a compiler framework that can be used to dynamically opti-
mize generic software data planes, taking into account the runtime characteristics
and packet processing behavior of the original network function. We believe that
the combination of these works can lay the foundation for a new model of packet
processing applications that is better suited for modern cloud environments, hav-
ing the capability to be dynamically re-combined, re-generated, and re-optimized
without sacrificing programmability, extensibility and performance.

ii

Acknowledgements

This Ph.D. has totally changed my personality and way of thinking, thanks to all
the wonderful (and, sometimes bad) experiences that I got and the amazing people
that I met and worked with. It was a journey that I would always remember and
something that I will definitely start again if I could. Many people have assisted
me during this journey and I would like to express my gratitude to all of them for
helping me become a researcher and the person that I am today.

First of all, I would like to thanks my advisor, Prof. Fulvio Risso for all the
lessons that I learned from him, for his patience, his immense love in the field, and
his capacity to drive me in the right directions when it was necessary. I will be
always grateful to him.

My colleagues and friends Matteo Bertrone and Mauricio Vasquez (the initial
Polycube team), with whom I have shared all the years of my Ph.D. and who helped
me to refine my research and provided invaluable help when I needed it most. It
is also thanks to them that I was able to reach a certain level of maturity and
robustness of the works presented in this thesis.

All the people and friends that I have met in Cambridge. Prof. Andrew Moore
for giving me the chance to do this wonderful experience, and Christos, Hilda,
Salvador, Yuta, and Marcin for all the interesting discussions that we had and for
helping me (a poor Sicilian guy) to survive in the UK during the entire summer. A
huge thanks go to Prof. Gianni Antichi, from having welcomed me in Cambridge
and for teaching me a lot in the last year. He became a real role model for me and
a great friend.

A great thanks to my parents that gave me the change to do a Ph.D. and bring
me up to love school and science, and that always supported me during the entire
Ph.D. A special thanks to my sister, Debora for all the suggestions and support
that she gave me and for being always present when needed. She was the first
person that I always called when, in panic, I was looking for advice.

Last but not least, my biggest thanks to Valentina. Although sometimes I
neglected her to focus on the Ph.D., she has been always on my side and supported
me in any choice I have made, even if this sometimes took me away from her.

iv

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Summary of Contributions . 5
1.2 Outline . 8
1.3 Research Projects Not Included in This Dissertation 8

2 Background and Motivations 10
2.1 Userspace vs. Kernelspace networking 10
2.2 The extended Berkley Packet Filter (eBPF) 12

2.2.1 eBPF for Network Functions 14

3 Creating Network Service with eBPF: Experience and Lessons
Learned 16
3.1 Introduction . 16
3.2 Experiences and Insights . 17

3.2.1 eBPF limitations . 17
3.2.2 Enabling more aggressive service optimization 21
3.2.3 Data structures . 22
3.2.4 High performance processing with XDP 24
3.2.5 Service function chaining . 26

3.3 Experimental Evaluation . 26
3.3.1 Test environment and evaluation metrics 26
3.3.2 Overcoming eBPF limitations 27
3.3.3 Enabling more aggressive service optimization 29
3.3.4 High performance processing with XDP 31
3.3.5 Service function chaining . 31

3.4 Conclusions . 32

v

4 Polycube: A Framework for Flexible and Efficient In-Kernel Net-
work Services 34
4.1 Introduction . 34
4.2 Design Goals and Challenges . 36
4.3 Architecture Overview . 37

4.3.1 Unified Point of Control . 37
4.3.2 Structure of Polycube services 37
4.3.3 Remote vs Local services . 40

4.4 APIs and Abstractions . 40
4.4.1 Transparent port handling 41
4.4.2 Fast-slow path interaction 42
4.4.3 Debug mechanism . 44
4.4.4 Table abstractions . 44
4.4.5 Transparent Support for Multiple Hook Points 44
4.4.6 Transparent Services . 45

4.5 Service Chaining Design . 46
4.6 Management and Control Plane . 49

4.6.1 Model-driven service abstraction 49
4.7 Implementation . 51

4.7.1 Polycube Core . 51
4.7.2 Polycube Services . 53

4.8 Evaluation . 57
4.8.1 Setup . 57
4.8.2 Test Applications . 58
4.8.3 Framework Overheads . 64
4.8.4 Polycube vs Userspace Frameworks 65

4.9 Conclusions . 66

5 Accelerating Linux Security with eBPF iptables 67
5.1 Introduction . 67
5.2 Design Challenges and Assumptions 69

5.2.1 Guaranteeing filtering semantic 69
5.2.2 Efficient classification algorithm in eBPF 70
5.2.3 Support for stateful filters (conntrack) 71
5.2.4 Working with upstream Linux kernel 71

5.3 Overall Architecture . 71
5.4 Data plane . 73

5.4.1 Header Parser . 73
5.4.2 Chain Selector . 73
5.4.3 Matching algorithm . 74
5.4.4 Classification Pipeline . 74
5.4.5 Connection Tracking . 79

vi

5.5 Control plane . 83
5.6 Evaluation . 85

5.6.1 Test environment . 85
5.6.2 System benchmarking . 86
5.6.3 Realistic Scenarios . 91
5.6.4 Microbenchmarks . 95

5.7 Additional Discussion . 97
5.8 Conclusions . 98

6 Introducing SmartNICs in Server-based Data Plane Processing:
the DDoS Mitigation Use Case 100
6.1 Introduction . 100
6.2 Background . 101

6.2.1 SmartNICs . 101
6.2.2 TC Flower . 102

6.3 DDoS Mitigation: Approaches . 102
6.4 Architecture and Implementation 105

6.4.1 Mitigation . 105
6.4.2 Feature extraction . 107
6.4.3 Detection . 109
6.4.4 Rate Monitor . 109

6.5 Performance evaluation . 109
6.5.1 Test environment . 110
6.5.2 Mitigation performance . 110
6.5.3 Effect on legitimate traffic 113

6.6 Related work . 114
6.7 Conclusions . 115

7 Kecleon: A Dynamic Compiler and Optimizer for Software Net-
work Data Planes 116
7.1 Introduction . 116
7.2 The Case for Dynamic Network Function Optimizations 118
7.3 Kecleon System Design . 122

7.3.1 Design Goal . 122
7.3.2 Design Challenges and Assumption 122
7.3.3 Design Overview . 123

7.4 Kecleon Compilation Pipeline . 125
7.4.1 Packet Processing Logic Identification 125
7.4.2 Runtime Statistics and Data Collection 128
7.4.3 Kecleon Data Path Optimizations 130
7.4.4 Kecleon Pipeline Update . 134

7.5 Prototype Implementation . 135

vii

7.5.1 eBPF Plugin . 135
7.6 Evaluation . 135

7.6.1 Setup . 136
7.6.2 eBPF NFs (Polycube) . 136
7.6.3 eBPF-firewall (bpf-iptables) 137
7.6.4 Microbenchmarks . 138

7.7 Conclusions and Future Works . 139

8 Concluding Remarks 141

A List of Publications 143

Bibliography 145

viii

List of Tables

3.1 Reloading time of various eBPF services 30
4.1 Helper functions provided by Polycube at different level of the NF. 41
4.2 A list of NF implemented with Polycube. 52
4.3 Comparison between vanilla-eBPF applications and a Polycube net-

work function. All throughput results are single-core. 64
5.1 Comparison of the time required to append the (n+1)th in the ruleset

in milliseconds (ms). 96

ix

List of Figures

2.1 eBPF overview. 13
2.2 (a) Forwarding performance comparison between XDP and DPDK

with small packets (64B) redirected between different NICs. DPDK
uses one control thread, so only 5 to 6 are available for the forward-
ing. (b) CPU usage differences between DPDK, XDP, and Linux
when dropping packet with a variable offered load. The data were
obtained from [75]. 14

3.1 Throughput (left) and latency (right) for the Bridge service when
redirecting packets entirely in the fast path and when using the slow
path. 28

3.2 Effect on the end-to-end throughput, using the code tailoring tech-
nique (left) and the moving configuration from memory to code (right). 30

3.3 End-to-end throughput with an increasing number of tail calls. . . . 32
4.1 High-level architecture of the system 38
4.2 Message flow for Encapsulator and Decapsulator 43
4.3 (a) Transparent cubes attached to a port of the service. (b) Trans-

parent cube attached to netdev. 46
4.4 Internal details of the Polycube service chains 47
4.5 YANG to REST/CLI service description 51
4.6 Packet forwarding throughput comparison between Polycube pcn-

bridge NF (in both XDP and TC mode) and “standard” Linux im-
plementation such as Linux bridge (btctl) and OpenvSwitch (ovs). . 58

4.7 Throughput performance between a Polycube load balancer NF (i.e.,
pcn-lbdsr), ipvs, the standard L4 load balancing software inside the
Linux kernel and Katran, an XDP-based load balancer developed by
Facebook. 59

4.8 Throughput performance comparing with 1000 rules between a Poly-
cube firewall NF (i.e., pcn-firewall), iptables and nftables, which are
two commonly used Linux firewalls and OpenvSwitch (ovs) with
OpenFlow rules. 61

4.9 Architecture of the Polycube K8s plugin. 62

x

4.10 Performance of different k8s network providers for direct Pod to Pod
communication. 63

4.11 Performance of different k8s network providers for Pod to ClusterIP
communication. 63

4.12 Overhead of the Polycube service chain compared to the standard
eBPF tail call mechanism. 65

5.1 Location of netfilter and eBPF hooks. 70
5.2 High-level architecture of bpf-iptables. 72
5.3 Linear Bit Vector Search . 75
5.4 bpf-iptables classification pipeline. 76
5.5 TCP state machine for bpf-iptables conntrack. Grey boxes in-

dicate the states saved in the conntrack table; labels represent the
value assigned by the first conntrack module before the packet enters
the classification pipeline. 82

5.6 Single 5.6a and multi-core 5.6b comparison when increasing the num-
ber of loaded rules. Generated traffic (64B UDP packets) is uni-
formly distributed among all the rules. 87

5.7 Performance of the INPUT chain with an increasing number of rules.
bpf-iptables runs on a single CPU core and iperf on another core. 88

5.8 Multi-core performance comparison when varying the number of
fields in the rulesets. Generated traffic (64B UDP packets) is uni-
formly distributed among all the rules. 89

5.9 Connection tracking with an increasing number of clients (number
of successfully completed requests/s). 90

5.10 Throughput when protecting a variable number of services within a
DMZ. Multi-core tests with UDP 64B packets, bidirectional flows. . 92

5.11 Multi-core performance under DDoS attack. Number of successful
HTTP requests/s under different load rates. 93

5.12 Performance with single default ACCEPT rule (baseline). Left: UDP
traffic, 64B packets matching the FORWARD chain. Right: number
of HTTP requests/s (downloading a 1MB web page), TCP packets
matching the INPUT chain. 94

5.13 TCP throughput when the bpf-iptables ingress pipeline (with zero
rules) is executed on either XDP or TC ingress hook; bpf-iptables
running on a single CPU core; iperf running on all the other cores. 97

6.1 High-level architecture of the system. 106
6.2 Dropping rate with an increasing number of attackers. (a): uni-

formly distributed traffic; (b): traffic normally distributed among all
sources. 111

6.3 Host CPU usage of the different mitigation approaches under a sim-
ulated DDoS attack (uniform distribution). 112

xi

6.4 Number of successfully completed HTTP requests/s under different
load rates of a Distributed Denial of Service (DDoS) attack carried
out by (a) 1K attackers and (b) 4K attackers. 114

7.1 Static vs. Dynamic generation. The static compiler generates a NF
agnostic data path while Kecleon takes into account runtime data,
statistics, and behavior to generate the NF data path. 117

7.2 L2 bridge NF (eBPF-TC) performance with variable runtime con-
figuration settings between the original version and the one with the
unused features compiled-out; traffic is always the same across the
different runtime configurations. 119

7.3 (a) Overhead given by consecutive match-action empty table lookup
and (b) throughput with different map sizes and algorithms. 120

7.4 Throughput improvements when caching the computation of the top-
5 flows within a high-locality trace for the DPDK flow-classify sam-
ple application. 121

7.5 Kecleon Architecture . 124
7.6 Single-core throughput for various Polycube eBPF-based NFs. We

report the average, maximum, and minimum throughput values un-
der different configuration and traffic setup when using Kecleon to
generate the optimized code. 137

7.7 Single-core throughput for bpf-iptables. We report the throughput
under three different Classbench generated traces with no locality
(traffic is uniformly distributed) to high locality (few elephant flows). 138

7.8 Single-core throughput for bpf-iptables when only the Kecleon
instrumentation is applied, without any of the optimization passes
to take effect. The first bar indicates the overhead of the implicit
traffic-specific approach used by Kecleon, while the second indicates
the overhead for the use of guards tables. 139

xii

Chapter 1

Introduction

One of the main reasons behind the success of Internet and its widespread re-
volves around the “end-to-end” principle [138, 15]. The general idea behind it is
that, a network designed according to this principle should keep application-specific
features on the end-hosts of the network while maintaining its core simple. Interme-
diate nodes, such as switches and routers, are just “dumb” forwarding devices that
send packets between one end-host to another, while more sophisticated features
are implemented in the software running on the end-host devices.

During the years, this approach has been successfully applied to both wide area
networks (WAN) and data center networks (DCN). The simplicity and stateless
model of the core network have facilitated the implementation of fixed function-
alities running on specialized network hardware processors or application-specific
integrated circuit (ASIC), fostering the introduction of more network providers that
led to the rapid growth of the Internet traffic. On the end-hosts, the increased flexi-
bility and programmability of the software have encouraged the innovation resulting
in the realization of ground-breaking applications such as the World Wide Web.

While the end-to-end principle still stands as a fundamental design framework
in computer networking, in recent years, the distinction between the “dumb core”
and the “smart edge” has gotten blurred, with different trends that tip the bal-
ance more on a direction or the other. Modern network providers (ISPs) started
running their networks as a business, relying on the provision of value-added ser-
vices such as content distribution [137, 6, 122], safe browsing, or anti-malware,
also rented to third-parties to provide more advanced features and increase their
revenue [95]. Data center networks followed the same path; the growing need for
security and reliability has caused the network to implement more sophisticated fea-
tures such as proxies, intrusion detection and prevention systems, firewalls, caches
and load-balancers, implemented within dedicated hardware network appliances
(i.e., middleboxes) built for the specific application purposes [140].

On the other hand, motivated by the high infrastructure and management costs,
which result from the complex and specialized processing of the above-mentioned

1

1 – Introduction

devices, the advent of “network softwarization” proposed traditional network ser-
vice to be transformed into pure software images that can be executed on (cheap)
general-purpose servers - running on VMs or cloud sites. Then, by using Software
Defined Networking (SDN) [131], network traffic can be steered through a chain of
Virtual Network Functions (VNFs) in order to provide aggregated services.

With the introduction of these concepts, it becomes more evident that soft-
ware started playing a crucial role in the network dataplane architectures, with the
end-hosts that increasingly became a natural enforcement point for core network
functions such as load balancing [76, 94, 74, 16], congestion control [3, 89, 119], and
application-specific network workloads - thanks also to the development and avail-
ability of programmable network devices (e.g., SmartNICs). The new requirements
in terms of flexibility (software is intrinsically easier to program and to update
compared to the hardware implementations), and the recent advances in terms of
speed for the software packet processing have contributed to the proliferation of
a myriad of VNFs frameworks that provide implementations of efficient and easily
programmable software middleboxes [35, 90, 169, 86, 93, 100, 170, 123, 125].

Current solutions to implement the dataplane of those software packet processing
applications rely mostly on kernel bypass approaches, for example by giving to the
user-space direct access to the underlying hardware (e.g., DPDK [54], netmap [133],
FD.io [83]) or by following a unikernel approach, where the only the minimal set of
OS functionalities, required for the application to run, are built within the appli-
cation itself (e.g., ClickOS [106, 66, 96]). These approaches have perfectly served
their purposes, with efficient implementations of software network functions that
have shown potential for processing 10-100Gbps on a single server [134, 105, 72].

Recently, the advent of new networking technologies such as 5G, edge com-
puting, IoT, has brought a significant increase in the total number of connected
devices and cloud service load, requiring network operators to change the previ-
ously monolithic paradigm used to develop and deploy server applications in favor
of micro-services. Cloud-native technologies are used to develop applications built
with services packaged in containers, deployed as microservices, and managed on
elastic infrastructure through agile DevOps processes and continuous delivery work-
flows [87]. This paradigm shift has also brought a visible change in the type and
requirements of network functionalities deployed across the data center, given the
new workloads and applications running on the servers. For instance, cloud-native
platforms, like Kubernetes [82], rely on different network providers (a.k.a., network
plugins) to implement the underlying data plane functionalities and transparently
steer packets between the micro-services.
Those new requirements can be summarized by the following points:

• Runtime flexibility: A single cloud-native application is composed of sev-
eral services, each of which has thousands of instances that might constantly

2

1 – Introduction

change and be dynamically scheduled by a data center software called orches-
trator. Within this world, the service communication is fundamental, and
the network should follow the same behavior by continuously adapting to the
runtime characteristics to ensure end-to-end performance and reliability [13].

• Low overhead: Networking components should handle the communication
of each server in the cluster. As a consequence, the cost to be paid for running
network functions, in terms of resource consumption, for each server becomes
significant. This is even more evident within edge clouds, where the number
of available resources is limited.

• Agile service development: One of the biggest advantages of the micro-
service paradigm, together with the concept of building loosely-coupled, fine-
grained services is the continuous delivery (CD) software development pro-
cess; a small change to the application requires re-building and re-deploying
only a small part of the entire service. Newer software data planes should
follow the same approach, making it possible to easily update the existing
application by providing a replacement that does not disrupt the typical ser-
vice workflow [43].

• Automatic optimizations: From a developer’s point of view, writing an
efficient and, at the same time, easy to maintain software data plane is a
daunting task. Most of the time is just a matter of finding the right trade-off
between simplicity (e.g., modularity, easy-to-read code) and the performance.
As a consequence, we often see application-specific, and ad-hoc techniques
applied only to particular use-cases [72, 105], which do not perform well on
other scenarios or for a broader spectrum of applications. To better adapt
to this new “frenetic” environment, the network components should be able
to automatically adapt themself to the runtime condition with the minimum
amount of programming overhead.

• Work with vanilla Linux kernel: Applications are now running on the
host operating system that is shared between the different components (e.g.,
containers), which in turn rely on existing kernel functionality to accomplish
their tasks [9]. It is then crucial that network functions can easily interact with
existing “native” applications and also leverage kernel functionalities (e.g.,
TSO, skb metadata, etc.), without sacrificing performance and flexibility.

Unfortunately, the previously mentioned kernel-bypass approaches are at a stake
when adopted in this new scenario, for different reasons [120]. First, they require
the exclusive allocation of resources (i.e., CPU cores) to achieve good performance;
this is perfectly fine when we have a single dedicated machine for the networking
purposes but it becomes overwhelming when this cost has to be paid for every server
in the cluster since they permanently steal precious CPU cycles to other application

3

1 – Introduction

tasks. Second, they require to re-implement the entire network stack in userspace,
losing all the well-tested configuration, deployment and management tools devel-
oped over the years within the operating system. Third, they rely on custom or
modified versions of network drivers, which may not be available on on-demand
cloud platforms, also requiring a non-negligible maintenance cost. Last but not
least, they have difficulties (and poor performance) when dealing with existing ker-
nel implementations or communicating with applications that are not implemented
using the same approach, requiring them to adhere to custom-defined APIs (e.g.,
mTCP [88]) or to change the original application logic (e.g., StackMap [165]). As a
consequence, most of the existing cloud-native network providers today still rely on
functionalities and tools embedded into the operating system network stack (e.g.,
iptables, ipvs, linux bridge). Unfortunately, the drawbacks of this approach are also
evident. First of all, fixed kernel network applications are notoriously slow and inef-
ficient given their generality, which impairs the possibility to specialize the software
network function depending on workloads or the type of application that is running
on top of it. Secondly, software network functions that live in the kernel have also
proven hard to evolve due the complexity of the code and the difficulties in maintain-
ing, up-streaming or modifying the kernel code (or the respective kernel modules).

In this dissertation, we present our steps towards the definition and realization
of a novel class of software network applications that can fulfill those new require-
ments, removing the limitation seen with the existing approaches. We first present
Polycube, a framework that can be used to build flexible and efficient in-kernel
software network functions that follow the same approach of “cloud-native” appli-
cations, enabling the creation of efficient, modular and dynamically reconfigurable
networking components, available with vanilla Linux. It exploits the recently added
eBPF [107] subsystem to build the data plane of the network function. We will show
how Polycube enables the writing of complex networking components that can be
used to provide flexible and optimized replacements of existing (fixed) in-kernel im-
plementations such as iptables, while keeping the same semantic and syntax of the
original application, but with improved performance. Then, we move the focus to
Kecleon, a compiler framework that can be used to dynamically optimize software
data planes at run time by adopting a dynamic approach to the data path compi-
lation, where not only the static features but also the runtime data of the original
application are exploited to generate a custom version of the original data plane that
would be optimal to the data plane semantic and the packet processing behavior at
the same time. While the two systems focus on different layers, the combination of
both can lay the foundation of a new paradigm in building software packet process-
ing applications that can be dynamically re-combined, re-generated, re-compiled
and re-optimized without sacrificing performance, programmability or extensibility.

4

1 – Introduction

1.1 Summary of Contributions
We start the first part of the dissertation (Chapter 3) by exploring the possibil-

ity of using the extended Berkeley Packet Filter (eBPF) [107] as a base subsystem
to build complex software packet processing applications. So far, eBPF was mainly
used for monitoring tasks such as memory, CPU, page faults, traffic, and more,
with a few examples of traditional network services, e.g., that modify the data in
transit. However, it also has some characteristics that make it the right candi-
date for running data plane applications. First of all, eBPF can process a packet
entirely in kernel space, without context switches or packet copies between kernel
and user space. Second, it leverages a set of features that are already present in a
modern Linux kernel, without requiring additional kernel modules that are difficult
to create and maintain. Third, the possibility to compile and inject the code at
runtime paves the way to context-based customization of each network function.
Eventually, eBPF programs can cooperate with the kernel TCP/IP stack, possibly
complementing existing networking features. We make the following contributions.
We first analyze the possibility to create complex network functions that go beyond
simple proof-of-concept data plane applications, and we present the most promising
characteristics of this technology. Then, we indicate the main encountered limita-
tions, and some solutions that can mitigate the latter. Second, we summarize the
most important lessons and, finally, we provide a quantitative characterization of
the most significant aspects of this technology.

The above findings made us reaching to the conclusion that creating network
functions based entirely on eBPF is sometimes complicated given the lack of a com-
mon framework that provides useful abstractions to developers to solve common
problems or known limitations. Even though eBPF allows complex and user-defined
operations to be performed in the kernel, it is not Turing-complete. As a conse-
quence, it cannot support truly arbitrary processing, making the implementation of
some common functionalities (e.g., ARP handling in a router) challenging. Further-
more, no abstractions current exist to implement the (complex) control plane of a
service, hence forcing developers to dedicate a considerable amount of time to han-
dle common control plane operations (e.g., user-kernel interaction). This motivated
us to rethink how to enable a network function model where in-kernel network ap-
plications can be adjusted, injected and modified in a simple and defined way, hence
enabling the dynamicity and flexibility required by new data center workloads. We
present Polycube (Chapter 4), an overarching coherent software architecture that
allows in-kernel network services to be managed in a logically centralized manner.
With Polycube, we make the following contributions. First, we make it possible
to create complex network services that can overcome the eBPF limitations. We
define a specific structure of a service where each function can include an efficient
in-kernel data plane (based on eBPF) and a flexible user-space control plane. Then,

5

1 – Introduction

we handle through a specific programming API the interaction between the differ-
ent components, while keeping strong characteristics of isolation and composability.
Second, we manage the creation of complex network applications by allowing the
arbitrary construction and concatenation of different services to create arbitrary
chains of in-kernel network functions. Third, we introduce a generic model for the
control and management plane of each network function that simplifies manageabil-
ity and accelerates the development of new network services. We make it possible
to change the current version of a given Polycube service dynamically or to modify
the service chain at runtime, hence achieving a new type of customizability and
flexibility inside the Linux kernel. Finally, we identify and quantify the overhead
introduced by the Polycube abstractions, and we show the design and the perfor-
mance improvements that Polycube services can bring into the new cloud-native
environment (e.g., by presenting an implementation of a k8s CNI plugin). In a
nutshell, Polycube allows us to achieve the same modularity, flexibility, and devel-
opment process that is possible with user-space Network Functions but inside the
Linux kernel, with all the benefits that go with it.

To better present the advantages of this new model and the power of Polycube,
in Chapter 5 we present bpf-iptables, a fully-functional replacement of iptables
that emulates its filtering semantic but exploiting a more efficient matching algo-
rithm. We show how bpf-iptables achieves a notable boost in terms of perfor-
mance compared to the current implementation of iptables, particularly when a high
number of rules is involved, all of this within a vanilla Linux kernel. We make three
main contributions in this work. Firstly, we present the design of bpf-iptables
together with the main challenges and possible solutions to preserve the original
iptables filtering semantic. To the best of our knowledge, bpf-iptables is the
first solution that provides an implementation of the iptables filtering completely
in eBPF. Secondly, we give a comprehensive analysis of the main limitations and
challenges required to implement a fast matching algorithm in eBPF, keeping into
account the current limitations of the above technology. Third, we show a set of
data plane optimizations that are possible thanks to the flexibility and dynamic
compilation (and injection) features of eBPF, allowing us to create at runtime an
optimized data path that fits perfectly with the current ruleset being used.

To further enhance the capabilities of end hosts, while keeping the best possible
trade-off between resource consumption and performance, we have evaluated the
possibility to exploit programmable network interface cards (a.k.a., SmartNICs) to
offload partially (or fully) existing packet processing functions. In particular, we
took the DDoS mitigation as a use-case for this study. In Chapter 6, we then present
an architecture that can be used to transparently offload a portion of DDoS mitiga-
tion rules into a SmartNIC, thus achieving a balanced combination of the in-kernel
packet processing flexibility with eBPF to operate traffic sampling and aggregation,
with the performance of hardware-based filtering. We first analyze the various ap-
proaches that can be used to design an efficient and cost-effective DDoS mitigation

6

1 – Introduction

solution. As generally expected, our results show that offloading the mitigation
task to the programmable NIC yields significant performance improvements. How-
ever, we also demonstrate that due to the memory and compute limitations of
current SmartNIC technologies, a fully offloaded solution may lead to deleterious
performance. Second, as a consequence of the previous findings, we propose the de-
sign and implementation of a hybrid mitigation pipeline architecture that leverages
the flexibility of eBPF/XDP to handle different types of traffic, and the efficiency
of the hardware-based filtering in the SmartNIC to discard traffic from malicious
sources. Third, we present a mechanism to transparently offload part of the DDoS
mitigation rules into the SmartNIC, which takes into account the most aggressive
sources, i.e., the ones that primarily impact on the mitigation effectiveness.

Starting from the experience gained in the design and implementation of this
new type of in-kernel network services (e.g., bpf-iptables), we noticed that one
of the most important characteristics that contributed to the better efficiency and
performance of these applications is the possibility to specialize the corresponding
network data plane at runtime, according to the specific application logic. For ex-
ample, in bpf-iptables a lot of optimizations are applied at runtime according
to the type of organization of the rules in the data set; this, combined with the
dynamic injection of eBPF program in the kernel allowed us to notably outper-
forming all the other existing kernel implementations. Motivated by this work, we
then tried to answer the following question; “is it possible to perform these run-
time optimizations outside of the application context?”. Taking a step back, we
realized that traditional approaches to design and develop packet processing func-
tions are based on a static compilation. The compiler’s input is a description of
the forwarding plane semantic, and the output is a binary code that can accom-
modate any pre-defined processing behavior. Although improving hot-code paths
during the execution of a software program is nowadays possible with compilers
that support Profile Guided Optimizations (PGO), Feedback Directed Optimiza-
tions (FDO), those techniques have been architected to optimize generic computer
programs. Therefore, they do not easily accommodate the requirements of network
data planes programs that have packets as input. In the last part of this disser-
tation, we then present Kecleon, a runtime compiler for generic packet processing
applications that can dynamically generate an optimized version of the original
application’s data plane depending on its runtime behavior. Kecleon is designed to
be independent not only from the application itself but also from the technology on
which the application is implemented. It applies several dynamic optimizations at
the compiler’s Intermediate Representation (IR) level, to either be generic and to
also transparently exploit existing compiler’s analysis techniques and optimizations.
Kecleon takes into account (i) the network configuration, e.g., to prune branches
and instructions that are considered unreachable at runtime, (ii) the run time table
content, e.g., selecting the most appropriate data structure (hash-based versus tree)
to store the current data can speed up the lookup process and (iii) traffic patterns,

7

1 – Introduction

e.g., detecting the most frequently accessed entries to create an optimized fast-path
code for them. We illustrate the details of Kecleon in Chapter 7.

1.2 Outline
The rest of this dissertation is organized as follows. Chapter 3 briefly introduces

the eBPF subsystem and its main features, together with several insights and lim-
itations we have found while implementing complex data plane applications with
this technology. Chapter 4 presents Polycube, a software architecture that applies
the micro-service paradigm to the world of in-kernel network functions. Chapter 5
shows one of its applications, bpf-iptables; a more efficient and scalable clone
of iptables built around eBPF. Then, Chapter 6 focuses on the DDoS mitigation
use case, and presents a study of the combination of the in-kernel packet processing
flexibility performed with eBPF with the performance of programmable hardware-
based filtering performed into a SmartNIC. In Chapter 7, we present Kecleon, a
compiler framework that can be used to dynamically optimize software data planes
at run time. Finally, Chapter 8 concludes this dissertation and discusses suggestions
for future work.

Previously Published Work. This thesis includes previously published and
co-authored works. In particular, Chapter 3 is adapted from [114], Chapter 4
from [108] and Chapter 5 from [115, 22]. Chapter 6 is adopted from [109], which is
the result of a collaboration with the research center “Fondazione Bruno Kessler:
FBK”. Finally, the work in Chapter 7, which is still in a preliminary phase, is the
result of a collaboration with the University of Cambridge, UK, and it has not been
published yet.

1.3 Research Projects Not Included in This Dis-
sertation

As part of the master course, the author worked on other topics that are not
covered in this dissertation. However, they fall under the common goal of building
more efficient and flexible networks at the edge of the network (e.g., on resource-
contrained Customer Premise Equipment). Even though these topics were explored
almost three years ago, their motivations and results achieved are still considered
timely given the recent works that go on the same directions (e.g., [139], [62], [40]).

• Transforming a Traditional Home Gateway into a Hardware accel-
erated OpenFlow switch [112, 113]. Software Defined Networking (SDN)
proposes a new paradigm that allows network administrators to manage net-
work services from a centralized point of control through abstraction of lower

8

1 – Introduction

level functionality. The SDN innovation brought significant advancements
to different areas, such as the administration of home networks. Traditional
home gateways are, however, hard to manage as new application are intro-
duced and moved at the customer premises; applying SDN to these devices
would enable to program and control the home network from a centralize
point of control, allowing users to manage and configure the behavior of their
network via high-level applications.
In this work, we described our experience in porting OpenFlow on already
existing hardware switch with no support for the OpenFlow standard. We
presented our architecture that integrates a hybrid software and hardware
pipeline and that is able to compensate the hardware limitations in terms of
supported matches and actions, offloading only part of the OpenFlow rules,
which are properly translated into the corresponding hardware related com-
mands. We illustrated the design choices used to implement the functionali-
ties required by the OpenFlow protocol (e.g., packet-in, packet-out messages)
and finally, we evaluated the resulting architecture, showing the significant
advantage in terms of performance that can be achieved by exploiting the
underlying hardware, while maintaining an SDN-type ability to program and
to instantiate desired network operations from a central controller.

• Enabling NFV Services of Resource-Constrained CPEs [27]. Vir-
tual Network Functions (VNFs) are often implemented using virtual machines
(VMs), since they provide an isolated environment compatible with classical
cloud computing technologies. Unfortunately, VMs are demanding in terms
of required resources and therefore are not suitable for resource constrained
devices such as residential CPEs. Such hardware often runs a Linux-based
operating system that supports several software modules (e.g., iptables) that
can be used to implement network functions (e.g., a firewall), which can be
exploited to provide some of the services offered by simple VNFs, but with
reduced overhead.
In this work, we proposed and validated an architecture that integrates native
software components in a Network Function Virtualization (NFV) platform,
making their use transparent from the user’s point of view. Our solution en-
ables an NFV orchestrator to optimize the scheduling of the Network Func-
tions (NFs) by initialing services that require to be close to end users such
as IPsec terminators or low-latency services, directly on the user CPE, while
other components of the same service (e.g., the NAT module) are executed
in a remote data center.

9

Chapter 2

Background and Motivations

In this chapter, we explore the available alternative that we have today to build
software packet processing applications, along with their motivations, implications,
and challenges. First, we explore the most important characteristics of packet
processing performed in kernel-space or user-space, showing the corresponding pro
and cons of both approaches (section 2.1). Finally, we provide a brief overview of
the extended Berkeley Packet Filter subsystem (section 2.2) and why we think it
may be beneficial for networking applications (section 2.2.1).

2.1 Userspace vs. Kernelspace networking
In recent years, thanks to the introduction and spread of Network Function

Virtualization (NFV), software has gained a considerable importance, with a lot of
network functionalities deployed at the end host that go beyond traditional switch-
ing and routing between VMs and containers. Current alternatives to building such
software network applications can be organized into two categories: user-level (or
kernel-bypass) approaches, and kernel-level implementations, where we use func-
tionalities embedded in the operating system networking stack.

Userspace networking. Moving functionalities from hardware to software has
increased performance demands for software network applications, favoring the ap-
pearance of specialized network facilities such as DPDK, netmap, and SRIOV. To
avoid expensive user-kernel transitions, those systems directly access the network
hardware from userspace, writing their network stack focused on performance and
optimizations. As a results, they produce considerable benefits both in terms of
throughput and latency. However, they have also some drawback, which we sum-
marize within the following points:

• High resource consumption. Most of the kernel-bypass solutions require
the exclusive allocations of one (or more) CPU cores to handle high-speed

10

2 – Background and Motivations

packet processing. This model works well for replicating in software a “mid-
dlebox” approach, where a single machine is dedicated to networking purposes
(e.g., routing, switching, or load-balancing). However, in a scenario (e.g., new
cloud environments) where most of the machines (and CPUs) are dedicated
to userspace applications (e.g., web servers), those approaches may result
overwhelming.

• Difficult integration with “native” applications/environments. Ap-
plications that are currently relying on kernel-level functionalities or using
kernel (e.g., socket) APIs cannot be transparently used when the userspace
application has direct access to the underlying network hardware. Several
companies have debugging tools developed over the years that cannot be
used with kernel-bypass approaches [104]; Kubernetes network providers still
count on iptables, ipsets, ipvs to provide security or load-balancing between
containers. Solutions exist to allow their co-existence. For instance, the Ker-
nel Native Interface (KNI) in DPDK or Netmap allow passing packets between
the userspace application to the kernel network stack, or StackMap [165] that
allows using the kernel TCP/IP stack directly. Unfortunately, these solutions
will either result in sub-optimal performance [101] or will require the use of
custom drivers, custom kernel modules, or modified kernels, which are not
always available in every environment.

• Security issues. Bypassing the Linux networking stack does not only im-
plies an incompatibility with several applications but also may bring security
issues [60]. The Linux TCP/IP stack has some non-trivial and incredibly
powerful features that have been developed over the years and that are well-
tested and quite reliable. Of course, re-writing all from scratch will have
the advantage of better design and then better performance [88, 105], but it
would still require a lot of time before having a stable userspace networking
stack comparable, in terms of features and compatibility, to the Linux kernel
one.

Kernelspace networking. The alternative to handling all packets from a userspace
process is to perform the processing entirely in the kernel, reducing at minimum the
number of kernel/userspace transitions, which are the primary source of overhead.
Except for the evident advantages of compatibility with existing applications and
tools, and the ability to run within a vanilla Linux kernel, this approach also has
some drawbacks.

• Poor performance. The Linux TCP/IP stack is made of several layers
and abstractions given by the generality of the design, which has to be valid
for several types of hardware and architecture. On one side, this offers better
compatibility between the different layers and a good level of abstraction from

11

2 – Background and Motivations

the underlying hardware, but on the other hand, it is also the main source of
the poor performance of the system. A packet entering the Linux TCP/IP
stack has to cross all the different layers, making it very hard to bypass or
“jump” from one layer to another.

• Difficult development process. Adding kernel-level functionalities is a
non-trivial and lengthy process. Writing custom kernel modules may require a
non-negligible effort to keep compatibility across the different kernel versions,
or it may incur reluctance from customers to include them in the production
system (a crash in the kernel module will hurt the entire system). On the
other hand, upstreaming functionalities into the mainline kernel requires to
“convince” maintainers of their relevance for the whole of the community. It
often results in either long delays before a feature is accepted and available
in future kernel releases, and it would break up the innovation cycles for a
company that wants to implement features that are useful only for their use
cases.

Until a few years ago, the approaches mentioned above were the only alterna-
tives available to develop kernel-level network functionalities. However, the recent
introduction and evolution of the “classic” BPF [107] subsystem, called extended
BPF, has introduced exciting features and concepts that make developing and run-
ning kernel-level functionalities easier and more efficient.

2.2 The extended Berkley Packet Filter (eBPF)
The Berkeley Packet Filter (BPF) is an in-kernel virtual machine for packet

filtering that has been deeply revisited starting from 2013 and is now known as
extended BPF (eBPF). In addition to several architectural improvements, eBPF
introduces the capability of handling generic event processing in the kernel, JIT
compiling for increased performance, stateful processing using maps, and libraries
(helpers) to handle more complex tasks, available within the kernel.

eBPF allows a user-space application to inject code in the kernel at runtime,
i.e., without recompiling the kernel or installing any optional kernel module. eBPF
programs can be either written using eBPF assembly instructions and converted
to bytecode using bpf_asm utility or in restricted C and compiled using the LLVM
Clang compiler. The bytecode can then be loaded using the bpf() system call. For
this process to succeed, the program has to get through a sanity-check from the
eBPF verifier, that walks the control flow graph to ensure termination, simulates
the execution to check that memory and registers are always in a valid state, and
verifies that the calls to helper functions are allowed.

A loaded eBPF program follows an event-driven architecture and it is therefore
hooked to a particular type of event (e.g., the arrival of a packet). Each occurrence

12

2 – Background and Motivations

Linux host
netdevice

tc ingress

netdevice

tc egress

eBPF sandbox

[skb]

XDP hook

eBPF control
plane program

eBPF sandbox

eBPF program
(e.g. Bridge)

Kernel space

User space

Network applications
(e.g., web server, etc)

Network stack

TC hook

eBPF program
(e.g. DDoS
mitigator)

eBPF program
(e.g. Firewall)

Tail call

CLANG + LLVM

JIT+Verifier

eBPF dataplane
source code

eBPF dataplane
binary code

MAPS

Figure 2.1: eBPF overview.

of the event will trigger the eBPF program execution, and, based on the type of
event, the program might be able to alter the event context1. Furthermore, pro-
grams are stateless by their nature, as each run is independent of the others. For
this reason, the eBPF provides maps, data structures accessible using helper func-
tions, needed to share information between (i) different runs of the same program,
(ii) various programs, or (iii) a program and the userspace.

For networking purposes, program execution is triggered by the arrival of a
packet. Two hooks are available to intercept packets and possibly mangle, forward
or drop them: eXpress Data Path (XDP) and Traffic Control (TC). XDP programs
intercept RX packets right out of the NIC driver, possibly before the allocation
of the Linux socket buffer (skb), allowing, e.g., early packet drop. TC programs
intercept data when it reaches the kernel traffic control function, either in RX or
TX mode. Multiple eBPF programs can be instantiated at the same time, even
attached to different hooks. Furthermore, eBPF programs can either operate in
isolation (returning the packet to the hook they are attached to) or be chained,
e.g., to create a more complex service, using a low-overhead linking primitive called

1For networking program, the event context is represented by the packet itself, while for
eBPF program attached to generic kernel function, the context is represented by the function’s
arguments.

13

2 – Background and Motivations

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

of cores

DPDK
XDP

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
P

U
 U

sa
g

e
(%

)

Offered load

DPDK
Linux
XDP

(b)

Figure 2.2: (a) Forwarding performance comparison between XDP and DPDK with
small packets (64B) redirected between different NICs. DPDK uses one control
thread, so only 5 to 6 are available for the forwarding. (b) CPU usage differences
between DPDK, XDP, and Linux when dropping packet with a variable offered
load. The data were obtained from [75].

tail call. Tail calls are a sort of long jump from one program to another; differently
from function calls, this primitive does not permit to return to the previous context.

A high-level view of the eBPF architecture, including both code injection and
run-time processing, is depicted in Figure 2.1.

2.2.1 eBPF for Network Functions
The most attractive features that we have found in the eBPF subsystem can be

summarized within the following points:

• Easy development process. eBPF programs follow the same development
process of userspace applications. Custom applications can be developed
independently from the kernel development process. They can be dynamically
injected into the kernel using the bpf() system call, without having to install
custom kernel modules or relying on modified kernels. This would also let the
user defining the behavior of the program, making it specialized for the current
applications and workloads, as opposed to fixed kernel implementations.

• High-speed packet processing. eBPF programs are JIT-compiled into na-
tive machine code before being executed2, which provides more considerable
advantages compared to an interpreted execution. Moreover, the execution

2This is valid only if the eBPF JIT flag is enabled in the kernel. However, latest kernel releases
have this flag enabled by default.

14

2 – Background and Motivations

of these programs at the XDP [75] level enables a high-speed packet process-
ing and forwarding, with performance also close to user-level approaches, as
shown in Figure 2.2a.

• Excellent performance/efficiency trade-off. As shown in Figure 2.2b,
eBPF programs do not require polling to read network packets from the de-
vice hardware; they are triggered only when a packet is received. As a con-
sequence, if the machine running the eBPF application is not receiving any
traffic, no CPU cycles will be consumed as opposed to DPDK, where the CPU
usage is always 100% even if no packets are received.

• Integration with the Linux subsystems. eBPF programs cooperate with
the kernel TCP/IP stack, interact with other kernel-level data structures
(e.g., FIB or neighbor table), and leverage kernel functionalities (e.g., TSO,
skb metadata, etc.), possibly complementing existing networking features.
Legacy applications or debugging tools can continue to be used without any
change to the existing applications.

• Security. As opposed to custom kernel modules, eBPF programs cannot
crash the system. The in-kernel verifier ensures that all the operations per-
formed inside the eBPF programs are correct and safe, discarding the injection
of faulty programs3.

• Explicit structure of NF operations. Finally, eBPF programs have a
clear distinction between stateless and stateful code; the operations outside
the eBPF VM environment are carried out only through specific “helper”
functions that have a well-defined syntax and construct. Multiple analysis
frameworks developed over the years [166, 153, 126] have forced this assump-
tion to simplify the analysis of NF operations to find buggy development
semantic behavior (verifier safety does not imply “semantic safety”) or to an-
alyze the performance of a NF [85, 132]. eBPF programs have this assumption
as part of the original design, making it easier to apply that type of analysis
and concepts.

3Of course, a bug in the verifier [52, 51] can reverse this assumption but this can be considered
as a remote scenario.

15

Chapter 3

Creating Network Service with
eBPF: Experience and Lessons
Learned

3.1 Introduction
The extended Berkeley Packet Filter (eBPF) is a recent technology that enables

flexible data processing thanks to the capability to inject new code into the Linux
kernel at run-time, which is fired each time a given event occurs, e.g., a packet is
received. While its ancestor, the Berkeley Packet Filter (BPF) was used mainly
to create packet filtering programs, eBPF has been successfully used primarily in
monitoring tasks [69, 45, 28, 70]. Surprisingly, its usage in traditional network
applications, such as data plane services, has been less intense.

In fact, the creation of complex network functions that go beyond simple proof-
of-concept data plane applications has proven to be challenging, due to the several
limitations of this technology, although it is evolving fast, as shown by the signifi-
cant number of patches and new features added almost daily in the Linux kernel.
In addition, eBPF is not (yet) backed by a rich ecosystem of tools and libraries
aimed at simplifying the life of potential developers; the BPF Compiler Collection
(bcc) [17] is more oriented to tracing than packet manipulation.

However, eBPF is very promising due to some characteristics that can hardly
be found all together, such as the capability to execute code directly in the vanilla
Linux kernel, hence without the necessity to install any additional kernel module;
the possibility to compile and inject dynamically the code; the capability to support
arbitrary service chains; the integration with the Linux eXpress Data Path (XDP)
for early (and efficient) access to incoming network packets. At the same time,
eBPF is known for some limitations such as limited program size, limited support
for loops, and more, which may impair its capacity to create powerful networking
programs.

16

3 – Creating Network Service with eBPF: Experience and Lessons Learned

This chapter presents our experience in developing complex network services
with eBPF and shows the most promising characteristics of this technology as well
as the main encountered limitations, as they appear in everyday life of a typical
developer. This chapter will discuss the actual importance of the above limita-
tions with respect to the necessity to create complex network applications and the
possible solutions (if any). Finally, it will also discuss some of the peculiar advan-
tages of this platform, backed by experimental evidence taken from our services.
At the end, we ponder advantages and limits of the eBPF technology, analyzing its
suitability as a platform for the development of future complex network services
targeting mainly virtualized environments.

This chapter is structured as follows. Section 3.2 represents the central part
of the chapter, highlighting our experience when coping with different aspects of
eBPF, and the main lessons learned. Finally, Section 3.3 provides the necessary
evidence to the previous findings and Section 3.4 concludes the chapter.

3.2 Experiences and Insights
This section presents the main challenges encountered while implementing com-

plex network functions with eBPF, together with different insights we adopted (or
could be adopted) to accomplish this task.

3.2.1 eBPF limitations
eBPF suffers from some well-known limitations due to its restricted virtual

machine, which are needed to guarantee the integrity of the system. This Section
discusses the impact of the above limitations and highlights some other, less known
issues that arise when creating network services.

3.2.1.1 Limited program size

eBPF programs are executed within the kernel context; for this reason, their
size is limited to a maximum of 4096 assembly instructions to guarantee that any
program will terminate within a bounded amount of time. This restriction may be
limiting when creating network functions that perform complex actions in the data
plane, considering that the BPF assembly instructions generated after the code
compilation could be significantly higher than the number of lines of code of the C
source file.

Learning 1: This limitation can be circumvented by partitioning the network
function into multiple eBPF programs and jumping from one to another through
tail calls. This technique enables the creation of network services as a collection of

17

3 – Creating Network Service with eBPF: Experience and Lessons Learned

loosely coupled modules, each one implementing a different function (e.g., packet
parsing, classification, fields modification), with a very low overhead in jumping
from a piece to another, as shown in Section 3.3.5. This attractive feature also
comes with an upper bound limit of 32 nested jumps, which we found being more
than enough to implement complex services.

3.2.1.2 Unbounded loops

Since eBPF applications can be loaded at runtime in the kernel, they are checked
through an in-kernel verifier that ensures programs cannot harm the system. The
verifier looks for multiple possible threats (e.g., state of BPF registers, type of
values, etc.), rejecting the code in case backward jumps are detected, thus ensuring
that all programs will terminate. We list some cases where this limitation may be
a problem.

• Parsing nested headers: this is the case of IPv6, which requires to loop
through all the extensions headers to find the last header indicating the type
of the upper-layer protocol in the payload of the packet. A similar issue
affects MPLS and VLAN headers, whose number of instances is not known
a priori. Creating a network function that performs these actions in eBPF is
not possible unless we introduce additional constraints, as described below.

• Arbitrary processing of packet payloads: this is required for example
to check the presence of a signature in the payload. While there are cases in
which this loop can be avoided thanks to the availability of specific helpers
that perform the entire job (e.g., to recalculate the L3/L4 checksum), in
general the necessity to perform a loop scanning the entire packet cannot be
excluded a priori.

• Linear scanning of data structures: algorithms that require a linear
scan of data structures (e.g., a map) may need to be adapted for the eBPF
environment. A possible example is a firewall that looks for the rule that
matches a given packet, which is usually performed through a linear scan
across all the active policies.

Learning 2: Although the eBPF assembly does not support backward jumps, as
far as bounded loop are concerned, we can exploit the pragma unroll directive of
the LLVM compiler to rewrite the loop as a repeated sequence of similar indepen-
dent statements. This can be achieved by imposing a constant upper bound limit
to the loop, such as the maximum number of IPv6 headers, nested MPLS labels,

18

3 – Creating Network Service with eBPF: Experience and Lessons Learned

packet size1. This solution presents two limitations: (i) the size of the program
increases, with the possible consequences (and solutions) shown in 3.2.1.1; (ii) we
may not be able to guarantee that all cases are handled, e.g., in case of an excep-
tional number of IPv6 headers is present. However, even if the lack of the support
for unbounded loops seems to be an important limitation, we found it not so crit-
ical in our programs, as it can be often circumvented by creating bounded loops,
although this is left to the responsibility (and experience) of the developer.

3.2.1.3 Send the same packet on multiple ports

This is still a rather common operation even in modern local area networks,
e.g., to handle broadcast frames (e.g., ARP requests), multicast, or flooding (e.g.,
in an 802.1D bridge). However, at least three issues can be encountered when
implementing this feature. First, we may need to loop through all the interfaces to
forward the packet the desired number of times; this can be implemented only if
we are able to set an upper limit on the loop and unroll it (as discussed in Section
3.2.1.2). Second, the packet must be cloned before sending it on an additional
interface; this can be done with the bpf_skb_clone_redirect() helper, which
simultaneously duplicates and forwards the original packet to a target interface.
However, this helper is available only when the program is attached to the TC
hook, while an equivalent helper is not available for XDP programs2. Third, if the
service is part of a virtual chain composed by multiple NFs connected through tail
calls such as in [1], the aforementioned approach fails. In fact, the redirect function
will be followed by a tail call, which never returns the control to the caller, hence
preventing the caller code to send a packet to multiple ports.

3.2.1.4 Packet-driven processing

While the execution of an eBPF program is triggered by an event, the only event
that is supported by TC/XDP programs is a frame traversing the selected kernel
hook. This prevents the eBPF data plane to react to other events such a timeout
that signals the necessity to periodically send a packet (e.g., neighbour greetings in
routing protocols), or to refresh an expired entry in a table. The above events have
to be handled elsewhere, such as in the slow path (Learning 3) or in the control
plane (Section 3.2.1.6).

1A patch [50] that adds support for bounded loops without the necessity to use the pragma
unroll directive has been recently proposed and it may be integrated in future kernel versions.

2For the sake of precision, XDP offers only the bpf_redirect_map() helper, which sends the
packet to a port but does not clone it.

19

3 – Creating Network Service with eBPF: Experience and Lessons Learned

3.2.1.5 Putting packets on hold

In some cases, network functions may need to put the current frame on hold
while waiting for another event to happen. This is the case of a router that holds
a packet while waiting for an answer to its own ARP request aiming at discovering
the MAC address of the next hop; the original packet should be released after
receiving the ARP reply. Unfortunately, eBPF does not have a “steal” action such
as in Netfilter, hence preventing this technology to take the ownership of the packet.
Possible workarounds to this problem can be envisioned, such as copying the entire
packet in a temporary memory, but they may not be suited for all cases (e.g.,
handling retransmissions, as the packet has to be released when a timeout occurs).

Learning 3: Taken together, limitations 3.2.1.3-3.2.1.5 suggest the necessity to
introduce a novel data plane component that is no longer limited by the eBPF
virtual machine, which executes arbitrary code that can cope with the cases in
which the current eBPF technology cannot be used. This brings to the evidence
the necessity of a slow path module, executed in userspace, that receives packets
from the eBPF program and reacts consequently with arbitrary processing defined
by the developer; for example by modifying the packet and sending it back in the
egress queue of a specific netdevice3. The necessity of this module is also highlighted
in [157] where the authors use the OvS userspace module to process packets that
do not match a flow in the OvS kernel eBPF data path.

3.2.1.6 No support for complex control planes

So far, eBPF has been used mostly for tracing applications, which feature a very
simple control plane such as reading data from maps. As a consequence, existing
eBPF software frameworks provide a nice set of abstractions that help developers to
create data plane code (hook handling, maps, etc), while it is rather primitive with
respect to the control plane, enabling userspace programs mainly to read/write data
from maps. Networking services are rather different and often require a sophisti-
cated control plane not just to read/write data from maps, but to create/handle
special packets (e.g., routing protocols), to cope with special processing that may
complicate (and slow down) the data plane if handled here (e.g., ARP handling;
Section 3.2.1.5), or to react to special events such as timeouts (Section 3.2.1.4).

Learning 4: This results in non negligible difficulties when implementing the
(complex) control plane of a service, as it forces developers to dedicate a consider-
able amount of time to write the code that handles common control plane operations
from scratch, without any help from existing software frameworks.

3In Linux, a netdevice is a physical or virtual network interface card.

20

3 – Creating Network Service with eBPF: Experience and Lessons Learned

3.2.2 Enabling more aggressive service optimization
The traditional approach when implementing a network function is to (i) create

a program that contains all possible use cases and control flows (branches) and
(ii) make it completely agnostic with respect to its actual configuration, which is
pushed in the data plane afterwards. With eBPF, this approach is no longer the
only option; in fact, programs can be compiled from their C source code and injected
in the kernel at runtime, with the system already up and running. This allows us
to take advantage of the runtime service conditions (e.g., traffic pattern, service
configuration, interface from which the traffic is received/sent) to empower more
aggressive optimizations compared to traditional programs. This section presents
three techniques of this type, enabled by the use of eBPF as data plane for our
networking services.

3.2.2.1 Moving configuration data from memory to code

A conventional approach for configuring a network function is to save data (e.g.,
the public/private ports in a NAT, the set of rules in a firewall) in memory, which
will be accessed by the run-time code each time a packet is received. In the eBPF
domain, this corresponds to saving data in maps, which provide a bidirectional
userspace-kernel communication channel. While this approach is the only viable
option for other technologies, eBPF enables the loading of new code dynamically,
hence allowing the creation of situational-specific code that also embeds the data
needed for the current processing. This technique leverages the superior processing
capabilities of modern CPUs (e.g., speculative execution), trading more processing
instructions for fewer memory accesses, which are known to introduce a noticeable
penalty in particular when random data access patterns are required, which lead
to cache ineffectiveness.

Learning 5: Hardcoding parameters in the eBPF code in a way that the service
can directly use them without any explicit memory access may lead to significant
performance gains (Section 3.3.3.2). However, this requires to handle configuration
changes by dynamically reloading the program with the updated parameters; more
details will be presented in Section 3.2.2.3.

3.2.2.2 Code tailoring

A network function can have a different set of features that are not always
needed at runtime. For example, our bridge supports both VLANs and Spanning
Tree, but they may not be required (hence be turned off) at a given time. The
amount of code needed to handle these features is not negligible and can impact
the forwarding performance of the eBPF network function.

21

3 – Creating Network Service with eBPF: Experience and Lessons Learned

Learning 6: Our experiments showed that cutting the superfluous code, at run-
time, will bring a significant reduction in the number of control flows and branches
of the program, hence simplifying the new code and improving the overall perfor-
mance of the service, as shown in section 3.3.3.1.

3.2.2.3 Dynamic reloading

The previous two techniques can provide substantial performance gains; how-
ever, their value would be impacted without the possibility to reload the program
at runtime with a more appropriate version, while maintaining at the same time the
state (e.g., maps) and configuration of the old program. Dynamic code reloading is
currently supported in eBPF, but the existing software frameworks do not offer any
help, leaving this responsibility in the developer’s hands and hence requiring ad-
ditional complexity when writing efficient network services. Our prototypical code
that supports this feature is strongly hinged on reducing the service disruption and
packet loss (see Section 3.3.3). While the new service is compiled and injected, the
old one still handles the traffic. When the new program is ready, maps of the old
instance are attached to it and then atomically swapped by substituting the pointer
to the old program with the new one. At this point, the new program will start
processing the traffic, and the old one is unloaded.

3.2.3 Data structures
eBPF does not have the concept of “raw” memory as used by classical comput-

ers; data are in fact stored in memory areas structured according to a predefined
access model (e.g., hash map, lru map, array). As of this writing, there are seven-
teen types of map that can be used by an eBPF program. Even though the existing
set of maps is very large and allows to fulfill the requirements of the majority of
applications, in the next two subsections we present some cases in which it may
not be enough.

3.2.3.1 Stack map

We may envision a service that needs to maintain a pool of elements that can
be consumed (e.g., through a pop action to get the first free element of the pool)
or produced (e.g., a push operation to insert an item back in the pool) atomically,
hence similar to the behavior of a stack; this is the case of a NAT service, which
needs to keep the list of available TCP/UDP ports. Unfortunately, this type of
data structure is not present among the set of maps available in eBPF. Although
its behavior can be emulated using an array and a global counter, used as the index
of the first element to retrieve, it is subject to concurrency problems when multiple
instances of the same program access the same data from different kernel threads,
causing race conditions.

22

3 – Creating Network Service with eBPF: Experience and Lessons Learned

3.2.3.2 Map with timeout

A typical scenario for networking functions is to have entries in a table with
an associated timeout; when an entry is not accessed for a specific time interval,
it expires and is removed from the list (e.g., the filtering database of a bridge).
Unfortunately, eBPF does not have such a map. This behavior can be emulated
by (i) inserting an additional field in the entry that corresponds to the current
timestamp and (ii) check, at every access, that the item has expired; if so, the entry
is deleted and the service continues as if the entry was not present. Obviously,
entries that are no longer accessed will never be deleted unless an LRU (least
recently used) map is used. This approach partly complies the lack of this table
in eBPF (indeed, it is the approach used to implement our 802.1D bridge), even
if it complicates the data and control plane of the service that must take care of
discarding old entries, with possible racing conditions.

3.2.3.3 Concurrent map access

When a hook triggers an eBPF program in the kernel, multiple instances of
the same eBPF application can be executed simultaneously on different cores. A
normal eBPF map has a single instance across all cores and could be accessed
simultaneously by the same eBPF program running on different cores. eBPF maps
are native kernel objects that are protected through the kernel Read-Copy-Update
(RCU) [163] mechanism, which makes their access thread safe, regardless of whether
the interaction occurred from userspace or directly from the eBPF program. The
fact that map access is thread-safe does not exclude the presence of data races, given
the implicit multi-threading capabilities of eBPF and the impossibility to use locks.

The interaction between the control plane and the data plane is also subject to
race conditions since they do not have a standard synchronization mechanism. For
example in a network bridge, if the cleanup of the filtering database is performed
in the control plane, we could create the following situation: (i) the control plane
reads an entry from the filtering database and realizes that it is too old, so it must
be removed, (ii) the data plane receives a packet for that entry and updates the
filtering database with the new timestamp, (iii) the control plane eliminates the
newly inserted entry, producing an unexpected behavior.

Learning 7: We have noticed that map access is thread-safe since these structures
are protected by the RCU mechanism. However, a race condition can still happen
either between control and data plane or from the same eBPF program running
on different cores. Unfortunately, we have not yet found a definitive and general
solution for all cases. It is, therefore, the developer who has to take care of this
problem and find alternative solutions depending on the application logic.

23

3 – Creating Network Service with eBPF: Experience and Lessons Learned

3.2.4 High performance processing with XDP
XDP provides a mechanism to run eBPF programs at the lowest level of the

Linux networking stack, directly upon receipt of a packet and immediately out
of driver receive queues. It has two operating modes; the first one, called Driver
(or Native) mode, is the primary mode of operation; to load eBPF programs at
this level, the driver of the netdevice must support this model. Running network
applications in XDP produces significant performance benefits (as shown in Sec-
tion 3.3.4) since the application can perform operations on the packet (e.g., redirect,
drop or modify) before any allocation of kernel meta-data structures such as the
skb, spending fewer CPU cycles for processing the packet compared to the conven-
tional stack delivery. The second one, called Generic (or SKB) mode allows using
XDP within drivers that do not have native support for it, providing a simple way
to use and test XDP programs with less dependencies.

In section 3.2.4.1 we show the main differences between XDP and the other
network hook point, i.e., TC; we will then present the main drawbacks found in
the current support of the Linux kernel for both XDP Driver (section 3.2.4.2) and
XDP Generic mode (section 3.2.4.3).

3.2.4.1 Limited helpers

XDP programs are only allowed to call a subset of helpers compared to eBPF
services attached to the Traffic Control (TC) layer. In general, eBPF has a set of
base helpers (e.g., map lookup/update, tail calls) available for all types of programs,
with some specific helpers for each category of hook; approximately 29 available in
TC and only 7 in XDP. We summarize the main differences in the following list:

• Checksum calculation: Primitives for checksum computations were not fully
available in XDP as they are in TC. It is going to be fixed in the upcoming
version 4.16 [31] of the Linux kernel, but this prevents an eBPF program
exploiting this feature to be executed on an older kernel. In that case, the
solution is to recompute the checksum “by hand”, with dedicated code in the
XDP program.

• Push/Pop headers: XDP does not offer any helper to push and pop a VLAN
tag from the packet or to perform tunnel encapsulation or decapsulation.
In case this feature is needed, the XDP program can use the more generic
bpf_xdp_adjust_head() helper, which provides the ability to adjust the
starting offset of the packet along with its size, so it is possible to manip-
ulate the packet according to the application logic.

• Multi-port transmission: As already highlighted in 3.2.1.3, an equivalent of
the bpf_skb_clone_redirect() helper available in TC is missing in XDP.
This does not allow to forward a packet on several ports at the same time,

24

3 – Creating Network Service with eBPF: Experience and Lessons Learned

which is required by different network applications (e.g., bridge, router), un-
less we implement this feature in the slow path.

Learning 8: Writing programs with XDP does not have significant differences
compared to TC; most of the actions such as direct packet modification, access to
maps or the use of tail calls remain identical with the other hook points. However,
the limited number of helpers forces the developer to use more generic functions or
to implement those functionalities in the slow path, complicating the code and mak-
ing it less portable, with the consequence that the code must different depending
on the kernel hook to which it is attached.

3.2.4.2 XDP Driver mode limitations

Most XDP-enabled drivers today use a specific memory model (e.g., one packet
per page) to support XDP on their devices. Among the different actions allowed
in XDP, there is the possibility to redirect the packet to another physical interface
(XDP_REDIRECT). While this action is currently possible within the same driver, in
our understanding, it is not possible between interfaces of different drivers. The
main problem is the lack of a common layer/API that the drivers can use to allocate
and free pages. With this model, when a driver performs a packet transmission,
it can communicate the actual sending, back to the Rx driver, which may recycle
the page without having to run into costly DMA unmap operations4. This lack
of generality limits the network applications that can take advantage of the speed
gain provided by XDP, that have to entrust the normal stack processing to make
the correct forwarding of the packet.

3.2.4.3 Generic XDP limitations

As previously mentioned, XDP generic can be used to run XDP programs even
on drivers that do not have native XDP support. Although they are executed right
after the skb allocation, thus losing the advantages available in the driver mode, it
still provides better performance than other hook points such as TC, as shown in
section 3.3.4. When triggered, XDP generic programs can modify the content of
the received packet; however, if the packet data are part of a cloned skb, an XDP
program cannot be executed on this packet, since cloned skb cannot be modified.
This leads to some limitations such as handling TCP traffic; in fact, our network
function running on the XDP generic hook was never be able to receive TCP traffic,
since most of the packets belonging to TCP sessions are cloned, in order to be later
retransmitted, if necessary.

4An interesting discussion on this topic is available here [37]. A patch towards that direction
is available in [38].

25

3 – Creating Network Service with eBPF: Experience and Lessons Learned

Learning 9: Although writing programs compatible with both XDP and TC is
not a significant problem, their use is not interchangeable. Using XDP programs
as substitutes of TC services is not always possible, resulting advantageous only
for specific applications. For example, connecting containers with XDP services
may not be appropriate since most of its advantages given by the the early stage
in which frames are captured would be lost. The XDP hook has been designed to
work mainly in ingress, making tricky the modelization of services such as a firewall
that would need, for example, to capture packets generated by the host and going
outside the network interface; this is instead possible using TC as a hook point in
ingress and in egress.

3.2.5 Service function chaining
The possibility to connect eBPF programs through tail calls in kernel facilitates

the combination of network services (e.g., bridge, router, NAT) in a virtual chain,
with considerable advantages as shown in [1]. In this way, eBPF services can
connect either (i) through a netdevice or (ii) through a tail call, directly to another
eBPF module. However, this requires the creation of a different source code based
on the port the eBPF program is attached to, since the assembly instructions used
in the two cases are different, which is an unnecessary complication for a developer.

Learning 10: To make the internal logic of the service independent from the
connection type, we can introduce the concept of virtual port, which is used by the
network function to receive and forward the traffic, and we can dynamically gener-
ate the proper source code for any given port. However, the creation of this level
of abstraction, so that eBPF programs are independent from the type of intercon-
nection with the outside world, is certainly possible but requires a significant effort
of the programmer as it is not explicitly foreseen by any available framework.

3.3 Experimental Evaluation
This Section provides experimental evidence about the topics discussed in Sec-

tion 3.2, showing the impact of the main eBPF limitations and the improvements
made in our prototypes. This evaluation leverages some of the network services
we have implemented, hence exploiting real applications as a test-bench for our
measurements.

3.3.1 Test environment and evaluation metrics
Our testbed encompasses two machines (Intel i7-4770 CPU running at 3.40GHz,

four cores plus hyper-threading, 8MB of L3 cache and 32GB RAM) physically

26

3 – Creating Network Service with eBPF: Experience and Lessons Learned

connected to each other through two direct 10Gbps links terminated in an Intel
X540-AT2 Ethernet NIC. Both machines feature an Ubuntu Server 16.04.4 LTS,
kernel 4.14.15, with the eBPF JIT flag enabled.

Throughput was tested by generating a unidirectional stream of 64B packets
through Pktgen-DPDK 3.4.9, with a rate that is dynamically adjusted to achieve
no more than 1% packet loss; depending on the test, packets may be looped to the
sender machine. Latency tests were carried out with Moongen [58], which generates
the same traffic pattern as before but it exploits the hardware timestamp on the
NIC to determine the traveling time of a frame when returns back to the sender; by
default, one frame every millisecond is sampled. All tests were repeated ten times
and the figures contain error bars representing the standard error calculated from
the different runs.

Unless explicitly stated, all tests generate traffic so that only one CPU core is
involved in the processing. Consequently, throughput in case of real deployment
can be much higher than the reported values thanks to the session-based traffic
load balancing provided by the Linux kernel, which automatically exploits multiple
CPU cores for the processing.

3.3.2 Overcoming eBPF limitations
3.3.2.1 Slow-path forwarding performance

Section 3.2.1 showed the most important eBPF limitations that prevent the
implementation of all the features required by complex network applications in the
data path, which can be delegated to a more flexible userspace component, although
with reduced performance.

To validate this module, we used our 802.1D bridge with two ports connected to
the physical interfaces of the machine under test. The bridge service uses the slow
path when a packet for an unknown MAC destination is received; in that case, it
will be sent to the slow path module, which floods that packet to all output ports.
To test this feature, we forced our bridge to send each packet to the slow path,
from where they are forwarded to the output port.

Figure 3.1a shows the throughput calculated in different networking hook points,
i.e., Traffic Control, XDP Generic and XDP Native between the slow path and the
fast path. We notice that, while the fast path forwarding varies depending on the
hook point used (XDP performs better than the Traffic Control), the same is not
valid for the slow path; the latter, in fact, uses the same mechanism to send the
packet to userland regardless the hook point type to which the eBPF program is

5We noticed that with newer kernels (e.g., 4.15/6) there is a marked performance deterioration,
as shown in Figure 3.1a, supposedly due to the fixes introduced after the Meltdown and Spectre
vulnerability disclosure.

27

3 – Creating Network Service with eBPF: Experience and Lessons Learned

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Traffic Control XDP Generic XDP Native

T
hr

ou
gh

pu
t

(M
pp

s)

Slow path
Fast path (4.14.1)

Fast path (4.16rc4)

(a)

 0

 20

 40

 60

 80

 100

0.1 0.2 1 2 2.5 3 3.5 4

L
at

en
cy

 (
us

)

Throughput (Mpps)

Traffic Control
XDP Generic

XDP Native
Slow path

(b)

Figure 3.1: Throughput (left) and latency (right) for the Bridge service when redi-
recting packets entirely in the fast path and when using the slow path.

attached, hence representing the bottleneck for this test. Moreover, we notice that
processing a packet in the slow path takes about three times more time than the
same processing done in the kernel. In this case, the maximum forwarding rate is
about 0.3Mpps regardless of packet size, since most of the time is spent in moving
the packet to userspace (and back), significantly reducing the forwarding speed.

Figure 3.1b indicates the latency measurements calculated in the same condi-
tions as before; we can notice that as long as the traffic remains below the maximum
throughput calculated for each hook point, the latency values are almost the same
regardless the hook type; this is due the batching mechanisms adopted by the driver
that introduce a fixed cost on the packet processing. On the other hand, slow path
processing incurs in a higher overhead due to the additional copy of the packet
between kernel-userspace. Also, we notice how the latency grows when approach-
ing the maximum value calculated in the previous test; in this case, the packet
loss value increases considerably with a consequent delay in the packet processing.
For example, the throughput of the bridge service calculated in Traffic Control is
2.22Mpps, and the peak in latency is seen at 2.5Mpps (in the graph, we do not
show the absolute value for readability reasons, but it is, in all three cases, over one
millisecond). The same behavior is identified in XDP Generic and XDP Native,
where the spike is at 3Mpps and 4Mpps respectively. These numbers indicate the
importance of performing most of the actions in the eBPF fast-path, reducing the
number of trips to the slow path. It is worth noticing that in real cases we have
seen few packets to be raised as exceptions and sent through the slow path, being
closer to 100% of the packets handled in the kernel for normal applications.

28

3 – Creating Network Service with eBPF: Experience and Lessons Learned

3.3.3 Enabling more aggressive service optimization
3.3.3.1 Code tailoring

To evaluate the potential benefits of this technique we took our bridge service
and we changed its features at runtime, enabling the VLAN and Spanning Tree
(STP) and measuring the final throughput using the same traffic, independently
from the enabled feature. Figure 3.2a shows how the complexity increases, in
terms of BPF instructions, when functionalities requiring more complex actions
are enabled. For instance, handling STP requires to parse and recognize BPDUs,
requiring also the intervention of the control plane. This complexity is then reflected
in the overall forwarding performance of the service, where we can see a drop of
up to 20% of the throughput between the baseline, in which acts as a simple L2
learning Bridge, to the full version of the bridge that supports VLAN and STP.
Note that this performance improvement would not be possible without the code
tailoring and the dynamic reloading, forcing the user to work with the full version
of the bridge even if those features were not required at that moment.

3.3.3.2 Moving configuration data from memory to code

To estimate the goodness of this technique, we used our bridge service, compar-
ing the actual throughput in the three different hook points, when the optimization
is enabled and when it is not, as shown in Figure 3.2b. In this specific case, the
optimization consists in moving the content of the filtering database from memory
(i.e., a map) directly into the code, with the entries statically embedded in it, for
example via a switch-case on the destination MAC address to forward the packet
on the right port. Obviously, we set a maximum limit to the entries directly written
in the code. This feature permits to optimize the most common case, by statically
inserting the entry within the code, hence avoiding (costly) memory accesses, with
performance benefits ranging from 5% or 10%, with the possibility of obtaining
higher gains by combining this technique with the previous one.

3.3.3.3 Reloading

This technique is heavily used in our services (in conjunction with the ones
described above) to adjust the code injected in the kernel with the updated runtime
service parameters. Table 3.1 shows the cost of this technique by comparing the
reloading time for different services, which can be split into two pieces. The first one
is the time needed to compile the C source code into eBPF assembly instructions
while the second is the time required to inject the program in the kernel, which
involves a pass in the in-kernel verifier.

We notice how the compilation phase consumes most of the reloading time (we
leverage bcc [17] to appropriately package eBPF modules in the kernel) while only

29

3 – Creating Network Service with eBPF: Experience and Lessons Learned

 0

 1

 2

 3

 4

 5

Baseline +STP +VLAN +VLAN+STP
 0

 100

 200

 300

 400

 500

 600

 700

T
hr

ou
gh

pu
t

(M
pp

s)

L
O

C
/I

ns
n

(#
)

Throughput (TC)
eBPF LOC

BPF Insn

(a)
 0

 1

 2

 3

 4

 5

Traffic Control XDP Generic XDP Native

T
hr

ou
gh

pu
t

(M
pp

s)

Without optimization
With optimization

(b)

Figure 3.2: Effect on the end-to-end throughput, using the code tailoring technique
(left) and the moving configuration from memory to code (right).

Table 3.1: Reloading time of various eBPF services

Service C LOC BPF Insn
Compilation (ms)

Injection
Kernel .h UAPI .h (ms)

Firewall* 1094 1564 8683 850 50
LBDSR 305 910 889 830 6
LBRP 470 723 885 853 2
Router 331 458 885 799 1
Bridge 243 464 854 236 2
NAT 564 441 847 809 1
DDoS 136 74 806 642 1
* This service uses a chain of eBPF programs; the time shown refers to

the one needed to compile and inject the entire programs chain, which
comprises several eBPF programs.

a small part, around 1%, is spent on the in-kernel injection. Also, we realized that
using the Linux standard kernel headers introduces a considerable overhead as they
internally include other headers that often are not needed by our eBPF program.
By carefully selecting the headers present in the uapi directory, which are often
smaller and more compact, we noticed a significant reduction in compilation time,
as shown in the firewall service in Table 3.1. In fact, this service uses multiple eBPF
programs in the data path; optimizing the compilation time of every small program
reduces the overall reloading time of the service. It is important to notice that bcc
provides additional primitives to facilitate the interaction with the eBPF ecosystem;
during the compilation phase, the code is then rewritten mapping the bcc-provided

30

3 – Creating Network Service with eBPF: Experience and Lessons Learned

helpers into the corresponding eBPF functions. The compilation time shown in the
Table 3.1 is the sum of three phases (of approximately the same duration) during
which the code is pre-processed, rewritten and ultimately compiled producing the
final BPF assembler code.

Some works such as [42] keep compiled versions of their services and then per-
form an optimization directly on the compiled code, without this additional over-
head. However, we believe that this mechanism limits the potential of previous
techniques, reducing their possible optimizations. Although in this case the over-
all reloading time would not be negligible, as we explained in Section 3.2.2.3, we
swap the existing program with its optimized version after the program has been
compiled and injected, thus avoiding any service disruption.

3.3.4 High performance processing with XDP
XDP Native. The performance benefits of Native XDP services are evident from
the previous figures. In fact, attaching the same program in XDP Native mode leads
to an increase in performance of about 65% (Figures 3.1a-3.1b), allowing to achieve
higher throughput. In addition, when comparing XDP programs with the other
hook points at the same throughput, it brings to a significant reduction of CPU
consumption due to the lower overhead for packets management. This speed comes
with the limitation that programs of this type can only be used when the entry
points of the chain are physical or virtual interfaces6, while they must return to the
normal stack delivery in case of different workloads (e.g., containers).

XDP Generic. Previous figures show that XDP Generic provides about a 25%
of performance improvement compared to Traffic Control (TC), allowing us to
conclude that it can be used to speed up the performance of services even for drivers
that do not have native XDP support. Generic XDP programs may be directly
attached to virtual ethernet interfaces (veth) providing services to workloads such
as containers, with hopefully a performance increment. However, this feature may
result difficult to apply in real-world scenarios, due to the problem mentioned in
Section 3.2.4.3.

3.3.5 Service function chaining
The ability to directly connect eBPF services to each other in the kernel (sec-

tion 3.2.5) is a significant advantage of this technology. This section evaluates
the overhead of the tail calls in the three different hook points by using a simple
program that forwards a packet between two physical interfaces, but whose code

6Recently, support for receiving frames with XDP has been added to the tuntap driver [162].

31

3 – Creating Network Service with eBPF: Experience and Lessons Learned

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7

1 2 4 8 16 32

T
hr

ou
gh

pu
t

(M
pp

s)

Number of tail calls

Traffic Control
XDP Generic

XDP Native

Figure 3.3: End-to-end throughput with an increasing number of tail calls.

includes a growing number of (empty) tail calls. As shown in Figure 3.3, the over-
head of the tail calls is almost negligible up to 8, which is enough for most of the
applications, while it increases significantly with 16 and 32; the reason of this addi-
tional overhead is given by the presence of indirect jumps, which are converted to
retpoline [30] to protect against the branch target injection vulnerability disclosure
(a.k.a., Spectre).

3.4 Conclusions
This chapter presents our experience in developing complex network applica-

tions with eBPF, an up-and-coming technology that allows executing code at run-
time in the Linux kernel, without the need to package custom kernel modules.
We described the main limitations of this technology demonstrating how, in most
cases, these can be circumvented without affecting the necessities of real network
applications. In other cases, we have proposed alternative solutions to overcome
these limitations. Thus, we identified and discussed several ideas related to the
possibility of injecting code dynamically in the kernel that opens the way to sev-
eral new optimizations strategies. Finally, we verified the real applicability of the
proposed ideas and the consequent performance advantages, exploiting the several
applications we created for our experiments. We are confident that this type of
practical learnings can positively influence ongoing development and advancements
in the field of eBPF-based network services and applications.
Note: The eBPF subsystem is in continuous development and new features, as well
as performance improvements, are added daily. As a consequence, it is possible that
some performance results or limitation presented in this chapter are now obsolete.
For instance, support for stack and queue maps was added recently, the overhead

32

3 – Creating Network Service with eBPF: Experience and Lessons Learned

given by consecutive tail calls has been almost removed [32] and the maximum num-
ber of instructions for every eBPF program has been increased to 1 million [150].
On the other hand, most of the limitations and results showed in this work are still
valid since they are part of the security model of the eBPF subsystem.

33

Chapter 4

Polycube: A Framework for
Flexible and Efficient In-Kernel
Network Services

4.1 Introduction
Network Functions Virtualization (NFV) enables network services to be trans-

formed in pure software images that are executed on standard servers. This tech-
nology guarantees lower costs thanks to the reduction of the number of physical
appliances [59] and to the possibility to rely on (cheap) commodity hardware. At
the same time, it enables more agile services thanks to the click-and-play nature of
the software.

The most common approach to NFV is through a set of (chained) VMs or
containers, connected by means of a virtual switch [127]. This often includes het-
erogeneous applications, built from different vendors, with diverse characteristics
e.g., in terms of configuration protocols and life-cycle management, which compli-
cates day-by-day operations [123]. This heterogeneity impairs also on the possibility
to achieve higher throughput through cross-NF optimizations, as each application
operates in isolation. For instance, even simple approaches, such as zero-copy or
shared memory between cascading functions (e.g., [20, 79, 123, 134]), are often
very difficult to deploy in practice. Furthermore, advanced features such as ser-
vice decomposition [96], fault-tolerance [143], high availability [67, 129], should be
provided separately for each VNF, complicating the design of the control plane
and making the system more complex [63]. Finally, the computational requirement
for the above VNFs is often huge, due to the number of different components in-
volved (e.g., hypervisors, VMs with their guest operating systems, vSwitch, etc.)
not to mention the cost in moving a packet during its journey, due to the many
components traversed and the several transitions between kernel and user space.

Driven by the above-mentioned issues, several NFV frameworks [125, 73, 123]

34

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

have been presented with the goal of providing both a programming model (for
building NFs) and an execution environment (for running NFs) together with a
set of common abstractions that avoid re-implementing same functionaly across
different services. The majority of the state-of-the-art NFV frameworks rely on
kernel-bypass approaches (e.g., DPDK [54], Netmap [133]) to provide high-level
performance in terms of throughput and latency.

Although they bring unquestionable performance improvements, there are some
scenarios where they may not be appropriate or their performance result limited, as
we have seen in the previous chapters. On the other hand, the alternative to them
is to perform the processing entirely in the kernel. A few years ago, this would have
been a “dumb” idea; the monolithic design of the Linux kernel was a great limitation
for two desired properties of network function: performance and flexibility. Network
applications relying on kernel components (e.g., OvS [127]) have been proved hard
to evolve due to the cost of managing kernel modules or to deal with a large and
complex codebase, “convince” maintainers of its usefulness, and wait for a new
release; a process that may take several months, or years. However, the recent
introduction of the extended Berkeley Packet Filter has introduced a new type of
application deployment method for the Linux kernel, resuming the opportunity to
achieve (i) the desired flexibility, thanks to the possibility to dynamically inject
userspace defined programs into the kernel without having to restart the machine
or rely on custom kernel modules, and (ii) performance, since it is possible to “skip”
specific sections of the TCP/IP stack, if not needed.

In this chapter we present Polycube, a novel software framework that enables
the creation, deployment and management of in-kernel network functions. In par-
ticular, it offers (i) the possibility to implement complex functions where the data
plane is executed in the kernel context, (ii) enables the creation of arbitrary service
chains, hence simplifying the creation of complex services through the composi-
tion of many elementary components and (iii) offers a service-agnostic interface
that decouples the control and management logic (which is generic and valid for
all services) from the actual service logic, hence enabling the dynamic and seam-
less deployment of arbitrary network services. In summary, this chapter makes the
following contributions:

• We show the design and architecture of Polycube (section 4.3). Although
Polycube contains several ideas and concept that are shared among the ex-
isting NFV frameworks (e.g., modularity, functional service decomposition),
it applies them to the kernel world, which implies different challenges and
design solution to be achieved in this scenario. To the best of our knowledge,
Polycube is currently the only opensource framework that provides a unified
architecture for the development, execution and chaining of in-kernel network
functions.

35

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

• We provide a description of the APIs and abstractions provided to the devel-
opers to simplify the development of new services (section 4.4).

• We demonstrate the practical benefits and of the Polycube programming
model with a complex application, namely a network provider plugin for
Kubernetes (section 4.8).

Polycube source code, documentation and implementations of the various net-
work services are available at GitHub [12].

4.2 Design Goals and Challenges
The main objective of Polycube is to provide a common framework to network

function developers to bring the power and innovation promised by NFV to the
world of in-kernel packet processing. This has been made possibile in the recent
years thanks to the introduction of eBPF. However, eBPF was not created with this
goal in mind; it serves only as a generic virtual machine that enables the execution
of user-defined program into the kernel, attaching them to specific points into the
Linux TCP/IP stack or to generic kernel functions (e.g., kprobes).

Common structure and abstractions for developing in-kernel NFs. The
eBPF subsystem and, more generally, in-kernel applications do not have the concept
of virtual ports from which the traffic is received or sent out. Moreover, as we
have seen in Chapter 3, the realization of complex network functionalities are not
always possible in eBPF, given its security model that is forced by the in-kernel
verifier to ensure that the execution of the program does not harm the system. For
instance, no abstractions current exist to implement the (complex) control plane
of a service, hence forcing developers to dedicate a considerable amount of time to
handle common control plane operations (e.g., user-kernel interaction).

Polycube must provide a common programming framework and models to al-
low developers to use high-level abstractions to solve common problems or known
limitations in a efficient and transparent way, while the framework optimizes the
implementations of those abstractions, ensuring high performance.

Simple management and execution of the NFs. Polycube must allow ex-
ternal operators (e.g., SDN controllers, orchestrators, network administrators) to
configure in-kernel functionalities to support a diverse set of use cases. This implies
the possibility to compose and configure the datapath functionalities or to dynam-
ically upgrade or substitute a given service at runtime. A clear separation between
the in-kernel data plane and the control plane would be desired, so that is becomes
easier to dynamically regenerate and reconfigure the data path to implement the
user policies.

36

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

Programmable and extensible service chaining. In a NFV environment, a
packet is typically processed by a sequence of NFs, giving the possibility to run
different NFs at the same time, which are also manufactured by multiple vendors.
Polycube must enable the possibility to create chain of NFs in the kernel, guaran-
teeing the correct forwarding sequence and same degree of isolation between them.

4.3 Architecture Overview
This Section introduces first the main ideas that inspired the design of Polycube;

then it will present the resulting software architecture and the most significant
implementation details.

4.3.1 Unified Point of Control
All network functions within Polycube feature a unified point of control, which

enables the configuration of high-level directives such as the desired service topol-
ogy. In addition, it facilitates the provisioning of cross-network function opti-
mizations that could not be applied with separately managed services. Polycube
supports this model through a single, service-agnostic, userspace daemon, called
polycubed, which is in charge of interacting with the different network function
instances. Each different type of virtual function is called Cube, which are similar
to plugins that can be installed and launched at runtime. A new Cube can be easily
added to the framework within a specific registration phase, in which the service
sends the information required for its identification, such as the service type or the
minimum kernel version required to run the service. When the service is registered,
different instances of it can be created by contacting polycubed, which acts mainly
as a proxy; it receives a request from a northbound REST interface and forwards it
to the proper service instance, returning back the answer to the user.

4.3.2 Structure of Polycube services
Each Polycube service is made up of a control plane and a data plane. The data

plane is responsible for per-packet processing and forwarding, while the control and
management plane is in charge of service configuration and non-dataplane tasks
(e.g., routing protocols). Although this separation between the control and data
plane is common in many network functions architectures, Polycube provides a clear
separation between these components; each service is composed of a set of standard
parts that make it easier for the programmers to implement the desired behavior,
while Polycube takes care of creating all the surrounding glue logic, handling all
the interactions and communications between the different components.

37

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

eBPF VM
Encapsulator/
Decapsulator

polycubed

Kernel space

User space

Kernel abstraction layer

Service
Controller

R
P

C
lib

Service
ProxyR

EST A
P

I

Service module

Management Interface

Service
Instance #1

Mgmt/Ctrl

Slowpath

Fast path (eBPF)

Cube Cube …

Figure 4.1: High-level architecture of the system

4.3.2.1 Data plane

The data plane portion of a network service is executed per packet, with the
consequent necessity to keep its cost as small as possible. A Polycube service data
plane is characterized of a fast path, namely the eBPF code that is injected into the
kernel, and a slow path, which handles packets that cannot be fully processed in the
kernel or that would require additional operations, slowing down the processing of
the other packets.

Fast path. When fired, the fast path retrieves the packet and its associated
meta-data from the receive queues, then it executes the injected eBPF instructions.
Typical operations are usually very fast, such as packet parsing, lookups in memory
(e.g., to classify the packet), and map updates, such as storing data in memory (e.g.,
statistics), for further processing. When those operations are carried out, the fast
path returns a forwarding decision for that particular packet or send it to the slow
path for further processing.

Polycube supports the composition of a service fast path as a set of micro-
functional blocks, which can be created by stitching multiple eBPF programs to-
gether, controlled and injected separately from the control plane using the Poly-
cube service-independent APIs. This set of eBPF micro-blocks, called micro-cubes
(µCubes), are part of a single Cube instance and are handled by an unique control
plane and slow path module, as opposed to different Cube instances that have their
own controllers. This modular design introduces the necessity to specify an order of

38

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

execution of the µCubes inside the NF; when a packet reaches a Cube composed of
different micro-blocks, Polycube has to know the first module to execute, which in
turn will trigger the execution of the others µCubes within an arbitrary order based
on its internal logic. To do this, Polycube introduces the concept of HEAD µCube,
which is unique within the Cube itself and represents the entry point of the entire
service, whose execution is triggered upon the reception of a packet in a port. Then,
it can “jump” to the others µCubes. Having a different set of eBPF programs, each
one performing a specific function, is useful in particular for two reasons. First,
it allows the developer to handle each feature separately, enabling the creation of
loosely coupled services with different functionalities (e.g., packet parsing, classi-
fication, field modification) to be dynamically composed and replaced; each single
µCube can be substituted at runtime with a different version or can be directly
removed from the chain if its features are not needed anymore. Second, it can be
useful to overcome some well-know eBPF limitations such as the maximum size of
an eBPF program or the inability to create unbounded loops in the code.

Slow path. Although eBPF offers the possibility to perform some complex and
arbitrary actions on packets, it suffers from some well-known limitations due to his
restricted virtual machine, which however are necessary to guarantee the integrity
of the system. Those limitations may impair the flexibility of the network function,
which (i) may not be able to perform complex actions directly in the eBPF fast
path or (ii) could slow down its execution, adding more instructions in the fast
path to handle exceptional cases. To overcome those limitations, Polycube intro-
duces an additional data plane component that is no longer limited by the eBPF
virtual machine and it can hence execute arbitrary code. The slow path module is
executed in userspace and interacts with the eBPF fast path using a set of com-
ponents provided by the framework. The eBPF fast path program can redirect
packets (with custom meta-data) to the slow path, similar to Packet-In messages
in OpenFlow. Similarly, the slow path can send packets back to the fast path; in
this case, Polycube provides the possibility to inject the packet into the ingress
queue of the network function port, simulating the reception of a new packet from
the network, or into the egress queue, hence pushing the packet out of the network
function.

4.3.2.2 Control and management plane

The control plane of a virtual network function is the place where out-of-band
tasks, needed to control the data plane and to react to possible complex events (e.g.,
Routing Protocols, Spanning Tree), are implemented. It is the point of entry for
external players (e.g. service orchestrator, user CLI) that need to access service’s
resources, modify (e.g., for configuration) or read service parameters (e.g., reading
statistics) and receive notifications from the service fast path or slow path. Polycube

39

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

defines a specific control and management module that performs the previously
described functions. It exposes a set of REST APIs used to perform the typical
CRUD (create-read-update-delete) operations on the service itself; these APIs are
automatically generated by the framework starting from the service description (i.e.,
a YANG model of the service), removing this additional implementation overhead
to the programmer. To interact with the service, an external player has to contact
polycubed, which uses the service instance, contained in the URL, to identify which
service the request is directed and dispatches it to the corresponding service control
path, which in turn serves the request modifying its internal state or reflecting the
changes to the service data path instance. More details on how the control plane
and the REST APIs of each service are automatically generated is presented in
Section 4.6.

4.3.3 Remote vs Local services
The separation between the data and control plane allows to execute the two

components separately, not necessarily on the same server. While the former is
running in the server, the latter can be executed either locally or remotely. Poly-
cube may support both local services, installed as local applications on the same
server of polycubed and whose interaction is through direct calls, and remote ser-
vices, possibly running on a different machine and communicating with polycubed
through RPC mechanism. When a new service is plugged into the framework, it
communicates to polycubed if it is local or remote. In the first case, the path
to the service executable (i.e., a dynamic library file) is specified and polycubed
loads the library at runtime, forwarding the requests to the service control path as
a normal function call. In the second case the service is registered by providing the
remote RPC endpoint; in that case all subsequent requests for that service will be
redirected through the RPC channel. Polycube provides a management interface
that allows to control any service data plane, regardless of the service type and
structure, hence being agnostic to the control plane location. It allows to get ac-
cess to any registered service in the same way from its REST interface, facilitating
the service developer who does not have to deal with the low-level details of the
communication with the daemon.

4.4 APIs and Abstractions
Polycube provides a set of high-level APIs and abstractions to the developers to

simplify the writing of a new service, both from the control plane and the data plane
point of view. For example, it adds useful abstractions to manage special packets,
to cope with special processing that may complicate (and slow down) the fast path,
or to react to special events such as timeouts. Polycube implement such functions

40

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

Level Helper Function Arguments Description

Fast path
(eBPF)

pcn_pkt_send md, out_port Redirect a pkt to a VNF in-
terface (physical or virtual)

Fast path
(eBPF)

pcn_pkt_controller reason Send a pkt to the slow path
with a given reason

Fast path
(eBPF)

pcn_pkt_controller_md md, reason Send a notification to
userspace with a specific
reason

Fast path
(eBPF)

pcn_call_ingress_program index Call the µCube at a given
index attached to the
ingress pipeline

Fast path
(eBPF)

pcn_call_egress_program index Call the µCube at a given
index attached to the egress
pipeline

Slow path
(user)

pcn_packet_in pkt, md, reason Callback executed when
a notification is sent to
userspace

Slow path
(user)

pcn_send_packet_out pkt, dir Send a packet out to the
ingress or egress pipeline

Fast/slow
path

pcn_log level, txt Print debug messages with
a given verbosity level

Control
plane

pcn_reload code, idx Reload the µCube at a
given index with the new
code

Table 4.1: Helper functions provided by Polycube at different level of the NF.

as additional methods loaded and compiled together with the user provided data
plane code; then, they will be part of the final object eBPF file that is injected
into the kernel. Table 4.1 shows some of the main helper functions introduced by
Polycube at different levels of the network service code, i.e., the eBPF fast-path,
the slow path and the control and management plane.

4.4.1 Transparent port handling
A Polycube network service instance is composed by a set of virtual ports that

are uniquely identified through a name and an index inside the service itself. Each
port of the service can be attached to a Linux network device or to another service
port by means of the peer parameter. When the fast path of the service decides to
redirect the packet to a specific output port it can use the pcn_pkt_redirect()
function to send the packet to the next hop whether it is a net-device or another
Polycube service. Although the implementations for the above two types of next

41

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

hops are quite different, Polycube hides this difference by providing a generic helper
that receives the virtual index of the output port and, if the port is connected to a
netdevice, redirects the packet to the attached netdevice, otherwise jumps directly
to the next Polycube network function in the chain.

Ports connected to the Linux TCP/IP stack. One of the significant advan-
tages of eBPF is that it is deeply tied to the Linux kernel subsystem, providing the
same safety guarantees of the kernel as well as accessing primitives and functional-
ities available within the core, without having to implement them from scratch. A
Cube may want to customize just a small portion of the entire journey of the packet
in the Linux TCP/IP stack (e.g., performing rate limiting or DDoS mitigation); in
this scenario, after being processed by the Cube the packet should follow the usual
processing flow through the networking stack.

Polycube supports this scenario throught the introduction of a special port value,
called Host Port, which connects a port of the Cube directly to the Linux networking
stack. When a Cube redirects a packet to this port, both from the control or the
data plane, Polycube transparently send it to the host kernel networking stack,
where it will continue the standard processing.

4.4.2 Fast-slow path interaction
In Polycube, each instance of a service has its own private copies of fast and

slow paths; Polycube takes care of service isolation by delivering packets generated
by the fast path to the corresponding slow path instance and vice versa. It uses
two separate (hidden to the developers) eBPF programs, the Encapsulator and
Decapsulator, which are instantiated and injected into the kernel when polycubed
is started.

Encapsulator. Figure 4.2a shows the flow of operations performed when sending
a packet from the eBPF fast path to the slow path running in userspace. If the
packet currently processed in the eBPF service fast path requires additional inspec-
tions or further processing, it can be sent to the slow path module of the service by
means of the pcn_pkt_redirect_controller() helper. This function receives as
parameters the reason why the packet has to be sent to the slow path and, option-
ally, additional meta-data fields. Polycube hides the implementation details of the
communication between the eBPF fast path program and the service slow path;
it sends the packet to an eBPF control module (the Encapsulator shown in Fig-
ure 4.2a), that will copy the packet and its meta-data into a perf ring buffer, which

42

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

eBPF VM
Encapsulator

polycubed

Slow Path #1 Slow Path #2 Slow Path #N

Demultiplexer

Data plane
(eBPF Program)

Kernel space

User space

Packet
Module ID
InPort ID
Reason
Custom metadata

(a) Encapsulator

eBPF VM
Decapsulator

polycubed

Slow Path #1 Slow Path #2 Slow Path #N

Demultiplexer

Data plane
(eBPF Program)

Kernel space

User space
tap

Packet

Module ID
OutPort ID

(b) Decapsulator

Figure 4.2: Message flow for Encapsulator and Decapsulator

is used by polycubed to read the corresponding data from userspace1. Together
with the custom metadata, the Encapsulator adds some internal information, such
as the index of the Cube instance that has generated the message, which are used by
the Polycube daemon to call the packet_in() function of the associated service’s
slow path.

Decapsulator. This component handles the reverse communication, which hap-
pens when the slow path (or the control plane) of the service wants to inject a
packet back in the fast path or send it out on a specific Cube port. In the first case,
Polycube simulates the reception of the packet from a specific Cube port, which
is specified by the control or slow path module through a specific Polycube helper
function, while in the latter case the output port of the Cube is provided. When
called, this function triggers the execution of the Demultiplexer, which copies the
index of the Cube originating the message into a specific eBPF map shared with
the Decapsulator ; then, it sends the packet on a TAP interface specifically created
by polycubed. Differently from the Encapsulator, it does not use the perf buffer
to communicate with the Demultiplexer, which is only available for the kernel-
userspace communication and not for the opposite. The reception of a packet on
the TAP interface triggers the execution of the Decapsulator eBPF program, which

1eBPF provides specific helpers that allow to store custom data into a perf event ring buffer.
Userspace programs can then use this buffer as a data channel for receiving events from the kernel.

43

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

is attached to the eBPF hook point of the TAP interface. When executed, the De-
capsulator extracts the index of the eBPF program to call from the map and jumps
to the next program, following the same operations described in Section 4.5.

4.4.3 Debug mechanism
Polycube provides a debug helper that can be used in both fast and slow/-

control path to print debug messages. Although this feature is quite common for
userspace programs, it is not the same for the eBPF programs. They can use
the bpf_trace_printk() function to print debug messages; once the program is
loaded, the verifier checks whether program is calling this function and allocates
additional buffers, which may slow-down the processing of the function. Polycube
uses a more efficient mechanism through the pcn_log() helper; when called, this
helper uses a perf ring buffer to send debug messages to polycubed, which redi-
rects them to the current log file, as for the slow and control path. Finally, using
different log levels, polycubed is able to dynamically remove all the references to
the debug messages under the specified log level, reloading the service fast path to
reflect the changes.

4.4.4 Table abstractions
To store the network function state across different runs of the same program

or to pass configuration data from the control path to the fast path, a Polycube
service uses eBPF tables, which are defined into the service fast path and are created
when the program is loaded. Every eBPF table has a scope into the system, which
expresses the possibility to read and/or modify the table content from another eBPF
program. Polycube introduces the possibility to define PRIVATE tables, which are
only accessible from the same µCube where they have been declared and PUBLIC
tables, which are instead accessible from every µCube running in the machine. In
addition, since Polycube supports the possibility to compose the network function
data path as a collection of µCubes (i.e., simple eBPF programs), we added the
concept of SHARED tables, where a table can in fact be shared between a given set
of µCubes. In this case, when the table is instantiated, it is possible to specify the
namespace within which this table will be shared.

4.4.5 Transparent Support for Multiple Hook Points
Polycube supports two different type of services that corresponds to the exist-

ing networking “attachments” points (a.k.a., eBPF hooks) available in the eBPF
subsystem, namely Traffic Control (TC) and eXpress Data Path (XDP). Although
in eBPF, the initial context and the type of operations available differ from the
two hooks, Polycube hides those differences allowing the developer to focus only on

44

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

the network function semantic, while the framework will take care of handling the
differences in the implementation and management of the two subsystems.

Fast path transparency. Polycube provides the ability to write the data plane
of a network function (i.e., the eBPF program) independently from the type of
hook to which it is attached/ TC and XDP programs differs in: (i) the initial
context available when the eBPF program is triggered, which represent basically
the received packet, (ii) the type of helpers that the program is allowed to call and
(iii) the return type of the program, which communicates the forwarding decision
for that specific packet. Polycube hides the above differences providing additional
custom helper functions that are used to manipulate or perform different operations
on the packets regardless from the type of program currently used. In particular, it
“wraps” the execution of the program around two additional components that are
executed before and after a packet enters and/or leaves the Cube. Those wrappers
take care of converting the original context into a standard Polycube format and
perform the reverse translation on the opposite direction. Note: we will see in
Section 4.5 how these wrappers are fundamental for the implementation of the
Polycube service chaining.

Slow & Control path transparency. Even the interaction between the fast
and slow path is subjected to differences depending on the type of hook point in
which the function is executed. As for the previous case, Polycube provides a
transparent API for this interaction, hiding the details to the developers, who do
not have to worry about the mechanisms used to exchange data. The encapsulator
and decapsulator, shown in Section 4.4.2 are another example of this seamlessy
interaction. The implementation of those components depend on the hook point at
which the service is attached; when a packet from the control/slow path of a service
is injected into the fast path, polycubed selects the appropriate control program
depending on the type of the service instance.

4.4.6 Transparent Services
A Polycube standard service (i.e., a Cube) is made of a set of virtual ports.

When a packet is received on a specific port, the Cube takes a forwarding decision
to redirect the packet to one of its output interfaces. This process may depend on
the specific port configuration and the behavior configured for each service. For
example, a router Cube has an IP address associated to each of its ports; when
a new packet arrives it checks the routing table to find the next-hop address and
forward the packet consequently.

On the other hand, there are services that do not have any specific port con-
figuration, and their behavior is independent from the number of ports or their
parameters. To address this case, Polycube introduces the concept of transparent

45

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

Router Cube
NAT

DDoS
Mitigator

port1 port2 port3
(a)

Host TCP/IP
Stack

DDoS
Mitigator

netdev

(b)

Figure 4.3: (a) Transparent cubes attached to a port of the service. (b) Transparent
cube attached to netdev.

cubes. A transparent cube does not take any forwarding decision. It is composed
of an ingress pipeline that is called when a packet enters the service, and an egress
pipeline that is called when the packet leaves the cube. Moreover, it has to be
attached to a specific port that can be either a virtual port of another cube or a
Linux netdevice.
Transparent services attached to Cube’s port. Multiple transparent cubes
can be attached to a port of a Cube by specifying a position in which the trans-
parent service should be placed with respect to the others transparent cubes; this
also defines the order of execution of the services. When attached, they have the
possibility to inherit some specific parent’s port configurations that can be used
to automatically configure the service itself. For example, in Figure 4.3a a NAT
service attached to a router’s port can read the corresponding IP address and use
it for the NAT translation.
Transparent services attached to netdevs. A transparent cube can be also
directly attached to a Linux netdev, as shown in Figure 4.3b. When a packet
reaches the netdevice, the ingress pipeline of the service is called; once completed,
the packet is passed to the host’s TCP/IP stack. At the same way, when a packet is
sent out to the netdevice, the egress pipeline is executed. Polycube loads the ingress
pipeline into the eBPF ingress hook (i.e., XDP or TC_INGRESS) and egress (i.e.,
TC_EGRESS) hooks.

4.5 Service Chaining Design
A Polycube service chain involves of a set of network function instances that are

connected to each other by means of virtual ports, which are in turn peered with a
Linux networking device or another in-kernel NF instance. In the standard model,
eBPF programs do not have the concept of port from which traffic is received or sent
out; it only provides a tail call mechanism to “jump” from one program to another.

46

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

netdev1

Tail call

Map Lookup

Map Update

Function Call

IDX METADATA

0
vport = 1
...

vport = 1
module_idx = 11

Input (netdev1)

br1
pre

processor
post

processor

ForwardChain

PORT VPORT-MODULE_IDX

0 0 - 10 (r1)

1 N.D. - 1 (ndev1)

Bridge

Output (netdev1)

bpf_redirect(if_idx)

IDX METADATA

0
vport = 0
...

r1pre post

Router

MOD_IDX eBPF PROG ADDR

1 0x001F (output ndev1)

10 0x0010 (router r1)

11 0x0011 (bridge br1)

PatchPanel (global)

Figure 4.4: Internal details of the Polycube service chains

To provide this abstraction, Polycube uses a set of additional eBPF components
and wrappers around the user-defined code; Figure 4.4 shows the resulting design.

When a packet traverses a chain in Polycube, it carries some metadata (e.g.,
ingress virtual port, module index), which are internally used by Polycube to cor-
rectly isolate the various NFs and implement the desired chain. In particular, the
cube index is used to uniquely identify the Cube fast path inside the framework and
it is uniquely generated when the Cube instance is created. Before injecting the
Cube’s fast path, Polycube augments the user-defined code with a set of wrappers
that are executed before and after the service itself. In particular, the pre-processor
contains the set of functions necessary to process the incoming traffic, while the
post-processor contains the helpers used by the fast path to send the traffic outside
of the Cube.

Pipeline Example. We will now walk through a simple example to illustrate how
packets are passed through the Polycube service chain. In Figure 4.4 we have an
instance of a Polycube Bridge service, called br1 with two virtual ports connected
respectively to a Linux networking device (i.e., netdev1) and to the first port of
an instance of Router Cube, called r1. First, when a new port is created in the
br1 instance, Polycube assigns a unique virtual port identifier (i.e., vport) to each
port; in our case, the port attached to the router has id #0, while the other has

47

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

id #1. At the same way, the router’s port attached to the bridge has id #0. When
a new packet is received to the physical interface netdev1, it has to execute the
br1 fast path and be presented as coming from the virtual port #1. To support
this abstraction, every time a Cube port is peered with a Linux networking device,
Polycube loads two additional eBPF programs. The Input eBPF program, which is
attached to the ingress hook of the interface, is loaded and compiled at runtime with
some pre-defined information such as the virtual port id (i.e., #1 in the example in
the figure) associated by Polycube to that Cube port and the index of the module to
which the port is attached (i.e., #11). Upon the reception of a new packet from the
physical interface attached to the bridge, the input program is triggered; it copies
the vport value into an eBPF per-cpu array map shared with the bridge instance and
performs a tail call to the br1 pre-processor, using the hard-coded module index2.

At this point, the control passes to the pre-processor module of br1, which
extracts the vport from the shared map (and possible additional metadata such
as the packet length, headers) and invokes the br1 code. The Cube fast path can
then use the vport to send traffic outside as result of a forwarding decision; this is
possible through a specific helper function contained in the post-processor, which
will redirect the packet to the next module of the chain. The post-processor uses an
additional auxiliary data structure, the ForwardChain, to obtain the index of the
next module of the chain corresponding to the given vport. This map has a local
scope and represents the actual connection matrix of the service instance with the
rest of the world. In our example, the lookup into the ForwardChain map with
vport #0 returns the next virtual port id of r1 (i.e., 0) and the index of the eBPF
program corresponding to that Cube (i.e., 10). As before, the post-processor copies
the vport into the shared map and “jumps” to the r1 pre-processor, which can then
perform a tail call using the PatchPanel to get the real address of the next eBPF
program. On the other hand, if br1 decides to redirect the packet to the port #0,
the post-processor retrieves the next module index (i.e., 1) from the ForwardChain
and jumps to this module, which corresponds to the Output program associated
with the physical interface. As for the input program, this module is injected with
a pre-defined if_index of the netdevice, which uses in the bpf_redirect() helper
function to send the packet out on netdev1.

To simplify the pipeline example, we have omitted the case in which the Cube
is composed of several µCubes (section 4.3.2.1). Conceptually, the operations re-
main the same; the only difference is that, after the pre-processor, the code of the
MASTER µCube is called, which in turn uses an internal ForwardChain to jump
from one µCube to another.

2The only way to share information from one eBPF program to another is to copy the data
into shared eBPF maps. For the internal communications, Polycube uses per-cpu maps, which
provide better performance thanks to their lockless access. Since a packet is processed only within
a single core (eBPF does not allow preemption), this mechanism is safe.

48

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

4.6 Management and Control Plane
The capability to add (or remove) a network function dynamically (even from a

remote server) into polycubed provides several advantages such as the possibility
to update an existing service, adding functionality without modifying the network
functions currently deployed and running. To support this model, the Polycube core
(i.e., polycubed) has been designed to be completely independent from the type
of network function that is installed. Polycubed has no idea of how the network
function is composed internally or what are its functionalities, and it takes only
care of forwarding the request to the proper service instance. This approach does
not require changes to polycubed whenever changes to the individual service are
needed; when the service is being updated, it is unplugged from the framework,
updated and plugged-in again without affecting existing services. On the other
hand, it complicates the service design, which has to define the interface to the
outside (i.e., the REST APIs). To simplify this process, Polycube uses YANG [25]
models, each one describing a specific service, to automatically synthesize the REST
interface of the service.

4.6.1 Model-driven service abstraction
The YANG data modeling language allows to (i) model the structure of the data

and the functionalities provided by the Polycube service, (ii) define the semantic
of the service data and their relationship and (iii) express their syntax, which
will be used to interact with the service itself. When a new service is registered,
polycubed reads the provided YANG model and generates an internal representation
of the service data together with a specific path mapping table used to access those
data from outside. Whenever a new request for that service arrives, polycubed
validates it (e.g., checking the correct format of an IP address, ports in a given
range) according to the information specified in the YANG model, without having to
rely on the service itself for those “ancillary” tasks.

4.6.1.1 Service base data model

Polycube provides to the developers a basic service structure that can be ex-
tended to compose the desired network function, offering fundamental abstractions
(e.g., VNF ports, port peers, hook type) that are used to simplify the interaction
between the different services and system components. The basic structure, shown
in the YANG Listing 4.1, reflects the internal representation of a Polycube service,
with its primary parameters and components. Every service within the framework
is uniquely identified through a name, which is specified using the service-name
extension; Polycube does not allow multiple services with the same name. The

49

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

module pcn−base−s e r v i c e−model {
extension s e r v i c e−d e s c r i p t i o n { . . . }
extension s e r v i c e−ve r s i on { . . . }
extension s e r v i c e−name { . . . }
extension s e r v i c e−min−kerne l−ve r s i on {}

grouping base−s e r v i c e−i n s t ance {
l ea f name { . . . }
l ea f uuid { . . . }
l ea f l o g l e v e l { . . . }
l ea f hook {

type enumeration {
enum TYPE_TC;
enum TYPE_XDP_SKB;
enum TYPE_XDP_DRV;

}
}
l i s t por t s {

key "name " ;
unique " uuid " ;

l ea f name { . . . }
l ea f uuid { . . . }
l ea f peer { . . . }

}
}

}

Listing 4.1: The base YANG model of a Cube

service-min-kernel-version is used to indicate the minimum kernel version re-
quired to execute the service, since there are some eBPF functionalities that are
available only on newer kernel versions; when the service is loaded, Polycube checks
if the host is running a kernel version greater than or equal to this value. Finally,
the service-description and service-version are used to describe the current
service. While the previously mentioned information describe the service itself (e.g.,
a firewall Polycube NF), the variables under the grouping statement are specific for
each service instance (e.g., a firewall fw1). Each instance is identified with a name,
which is unique inside the service scope, the hook point at which the instance is
attached to, and a list of ports, identified with a unique name inside the service
instance and a peer.

4.6.1.2 Automatic REST API generation

Polycube uses the information in the YANG model to automatically derive
the set of REST APIs that are used to interact with the service. As shown in

50

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

Figure 4.5: YANG to REST/CLI service description

Figure 4.5, each YANG resource is automatically mapped to a specific URL, while
the different HTTP methods are used to identify the operations required for a
particular resource. The GET operation allows to obtain the current value of a given
resource on the Polycube service, the POST operation is used to create an instance of
the resource, the PATCH operation is used to modify the current value of the resource
and finally, the DELETE operation is used to delete the specified resource. This
approach is similar to the one adopted by the RESTCONF specification [24], which
aims at providing a programmatic interface for accessing data defined in YANG,
allowing any client to communicate with the Polycube service by just knowing its
YANG module.

4.7 Implementation

4.7.1 Polycube Core
As of today, the code of Polycube, i.e., polycubed is implemented in 28k lines of

C++ code, running within an unmodified Linux without having to install custom
drivers or specific kernel modules. It only requires a v4.15 as minimum kernel ver-
sion to run the deamon; then, every specific service may have its own requirements

51

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

depending on the functionalities that they use. The Polycube daemon contains
both the code required to handle the different Polycube NFs but also the service-
agnostic server proxies, which parses at runtime the YANG model of every loaded
service to generate the appropriate REST API and to perform the validation of the
service parameters within the server itself.

Network
Function

Minim.
kernel

LoC FP LoC SP LoC CP
(AU/-
MAN)

Description

Bridge 4.15 239 40 5798 /
1105

A L2 switch NF with support
for VLAN and STP.

DDoS
Mitigator

4.15 140 / 1850 / 20 A NF that drops (malicious)
packets based on a blacklist ap-
plied on either IP src and dst
addresses.

Firewall 4.19 1654 / 5951 /
2945

A firewall service that drops
or allows packets based on the
configured rules.

Dynamic
Monitor

4.15 / / 2330 /
673

Generic service used to inject
eBPF code that monitors net-
work traffic, collecting and ex-
porting custom metrics. The
data plane size depends on the
injected code.

Load
Balancer
(DSR)

4.15 362 / 3476 /
566

A version of the Maglev scal-
able load-balancer [57].

Packet
Capture

4.15 / / 2511 /
822

A NF use to capture packets
flowing through a Linux netde-
vice or between other cubes.

Policy-
Based

Forwarder

4.15 243 / 2605 /
240

A simple ACL-based forwarder.

Router 4.15 276 120 3168 /
1030

A router NF.

NAT 4.15 380 / 6302 /
208

A NF that support Source,
Masquerade, Destination NAT
and Port Forwarding.

Iptables 5.3 2254 / 6409 /
1787

Special service that emulates
the behavior of iptables [115].

Table 4.2: A list of NF implemented with Polycube.

52

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

Polycube is built around the BPF Compiler Collection (BCC) [17], which pro-
vides a set of abstractions to interact with eBPF data structure or to load/unload
eBPF programs, together with a compilation toolchain that include Clang/LLVM
to allow a dynamic generation of the eBPF code that is injected in the kernel.
Polycube extends those abstractions with additional helper functions targeted to
networking services and to the Polycube NF structure. In particular, the availabil-
ity of the compilation toolchain allows to re-compile the code at runtime, enabling
more aggressive service optimizations that can be dynamically applied within the
NF, as we will see in the next Chapters.

4.7.2 Polycube Services
To stress test the generality of the Polycube programming model and abstrac-

tions, we have implemented a large range of network functions. Table 4.2 briefly
describes the type, role of each of them and the lines of code (LoC) required to
implement the fast path (FP), the slow path (SP) and the control path (CP). In the
former parameter we distinguish the LoC automatically generated from the YANG
model (i.e., CP/AU) and the one manually written (i.e., CP/MAN).

At the time writing, there are 18 different services implemented in Polycube,
with an overall number of about 54k lines of code, which include both the C++/C
code of the control and slow path and the eBPF code of the fast path. These
implementations suggest that Polycube succeed in the role of providing a generic
and highly customizable framework that can be used to implement a wide variety
of NFs.

4.7.2.1 Example: L2 Switch

Control Plane. In Listing 4.2 we show a small code snippet of the control plane
(CP) of the Polycube L2 Switch NF, in order to show the Polycube programming
model and abstraction provided.
1 Switch (const std : : s t r i n g name , const SwitchJsonObject &conf)
2 : Cube(dp_code , conf . getCubeType ()) {
3 l o g g e r ()−>i n f o ("Creat ing Switch in s t anc e ") ;
4
5 stp_enabled_ = conf . getStpEnabled () ;
6
7 addPortsLi s t (conf . getPort s ()) ;
8 insertFdb (conf . getFdb ()) ;
9 updateStpList (conf . getStp ()) ;

10 }

Listing 4.2: Sample CP code from Polycube L2 Switch NF.

When a new Switch Cube instance is requested to polycubed (via CLI or REST
API), the constructor is of the Switch object is automatically called, receiving the

53

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

name of the Cube together with a configuration object that contains all the param-
eters specified in the YANG model and automatically validated by polycubed. As
shown in line #2, the constructor provides the data plane code (i.e., the eBPF code)
to the Cube object, together with its type, which corresponds to the attachment
point of the cube itself. Then, Polycube will take care of compiling and loading the
code in the appropriate point of the NF chain.

When new request to the control plane arrives, other methods of the Switch ob-
ject are asynchronously called, allowing the user to implement the desired behavior
without having to handle the single REST API call. Listing 4.3 show an example
of those methods. The stub of these methods is generated automatically from the
YANG model; then, the user has to fill the corresponding methods with the spe-
cific implementation. In line #8 and #36 we can notice how Polycube provides
also abstraction to interact with the eBPF data plane. In this case, it can retrieve
the map fwdtable defined in the eBPF code and interact with it to set or get a
specific entry.
1 std : : shared_ptr<FdbEntry> Fdb : : getEntry (const uint16_t &vlan ,
2 const std : : s t r i n g &mac) {
3 std : : lock_guard<std : : mutex> guard (fdb_mutex_) ;
4
5 l o g g e r ()−>debug (" [Fdb] Received reques t to read map entry") ;
6 l o g g e r ()−>debug (" [Fdb] vlan : {0} mac : {1}" , vlan , mac) ;
7
8 auto fwdtable = get_hash_table<fwd_key , fwd_entry >(" fwdtable ") ;
9 fwd_key key{

10 . vlan = vlan ,
11 . mac = polycube : : s e r v i c e : : u t i l s : : mac_string_to_nbo_uint (mac) ,
12 } ;
13
14 return fwdtable . get (key) ;
15
16 l o gg e r ()−>debug (" [Fdb] Entry read s u c c e s s f u l l y ") ;
17 }
18 . . .
19
20 void Fdb : : addEntry (const uint16_t &vlan , const std : : s t r i n g &mac ,
21 const FdbEntryJsonObject &conf) {
22 std : : lock_guard<std : : mutex> guard (fdb_mutex_) ;
23
24 fwd_key key{
25 . vlan = vlan ,
26 . mac = polycube : : s e r v i c e : : u t i l s : : mac_string_to_nbo_uint (mac) ,
27 } ;
28
29 fwd_entry value {
30 . timestamp = timestamp ,
31 . port = port_index ,
32 . type = STATIC,

54

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

33 } ;
34
35 auto fwdtable = get_hash_table<fwd_key , fwd_entry >(" fwdtable ") ;
36 fwdtable . s e t (key , va lue) ;
37 l o g g e r ()−>debug (" [Fdb] Entry i n s e r t e d ") ;
38 }

Listing 4.3: Automatically generated methods of the Polycube L2 Switch NF.

Finally, Listing 4.4 shows the packet_in method that is asynchronously called
when a packet is sent from the DP to the CP. This method receives the packet
itself and a set of metadata associated with it, that can be used to understand the
reason of the CP intervention. Finally, when the packet is processed, as shown in
line #13, the packet can be sent out to a specific port.
1 void Switch : : packet_in (Ports &port , PacketInMetadata &md,
2 const std : : vector<uint8_t> &packet) {
3 l o g g e r ()−>debug ("Packet r e c e i v e d from port {0}" , port . name ()) ;
4 switch (s ta t i c_cas t <SlowPathReason >(md. reason)) {
5 case SlowPathReason : :BROADCAST:
6 broadcastPacket (port , md, packet) ;
7 break ;
8 case SlowPathReason : :BPDU:
9 i f (stp_enabled_)

10 processBPDU (port , md, packet) ;
11 else
12 broadcastPacket (port , md, packet) ;
13 port . send_packet_out (packet , tagged , vlan) ;
14 break ;
15 default :
16 l o g g e r ()−>e r r o r ("Not v a l i d reason {0} r e c e i v e d " , md. reason) ;
17 }
18 }

Listing 4.4: Packet-in method called when a packet is sent from the DP to the CP.

Data Plane. At the same way, Listing 4.5 shows a code snippet of the Polycube
L2 Switch NF data plane. The ingress point of the NF is the handle_rx method,
which is called every time a new packet enters this NF. This method is called after
the internal (and hidden) Polycube functions, whose behavior is to simulate the NF
chain and fill the appropriate helper variable such as the pkt_metadata structure,
as explained in Section 4.5.

When the processing is completed, the DP can use the Polycube specific helper
to redirect a packet to a specific NF interface (e.g., line #59), following is journey
through the Polycube NF chain or drop the packet, as shown in line #56. On the
other hand, if the packet requires further processing, it can be sent to the control
plane with a specific reason, as shown in line #63. Finally, it is worth to note that

55

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

the pcn_log() functions can be used to print debug messages with specific levels
of debug and they are automatically compiled in or out by Polycube without any
user intervention.
1
2 int handle_rx (struct CTXTYPE ∗ ctx , struct pkt_metadata ∗md) {
3 struct eth_hdr ∗ eth = data ;
4
5 i f (data + s izeof (∗ eth) > data_end)
6 return RX_DROP;
7
8 u32 i n _ i f c = md−>in_port ;
9

10 pcn_log (ctx , LOG_TRACE, "New packet from port %d" , i n _ i f c) ;
11
12 // LEARNING PHASE
13 __be64 src_key = eth−>s r c ;
14 u32 now = time_get_sec () ;
15
16 struct fwd_entry ∗ entry = fwdtable . lookup(&src_key) ;
17
18 i f (! entry) {
19 struct fwd_entry e ; // used to update the entry in the fdb
20
21 e . timestamp = now ;
22 e . port = i n _ i f c ;
23
24 fwdtable . update(&src_key , &e) ;
25 pcn_log (ctx , LOG_TRACE, "MAC: %M learned" , src_key) ;
26 } else {
27 entry−>port = i n _ i f c ;
28 entry−>timestamp = now ;
29 }
30
31 // FORWARDING PHASE: s e l e c t i n t e r f a c e (s) to send the packe t
32 __be64 dst_mac = eth−>dst ;
33 entry = fwdtable . lookup(&dst_mac) ;
34 i f (! entry) {
35 pcn_log (ctx , LOG_DEBUG, "Entry not found") ;
36 goto DO_FLOODING;
37 }
38
39 u64 timestamp = entry−>timestamp ;
40
41 // Check i f the entry i s s t i l l v a l i d (not too o ld)
42 i f ((now − timestamp) > FDB_TIMEOUT) {
43 pcn_log (ctx , LOG_TRACE, "Entry i s too o ld . FLOODING") ;
44 fwdtable . d e l e t e (&dst_mac) ;
45 goto DO_FLOODING;
46 }

56

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

47
48 pcn_log (ctx , LOG_TRACE, "Entry i s v a l i d . FORWARDING") ;
49
50 FORWARD: ;
51 u32 d s t_ in t e r f a c e = entry−>port ;
52
53 // HIT in forward ing t a b l e
54 /∗ do not send packe t back on the i n g r e s s i n t e r f a c e ∗/
55 i f (d s t_ in t e r f a c e == i n _ i f c) {
56 return RX_DROP;
57 }
58
59 return pcn_pkt_redirect (ctx , md, d s t_ in t e r f a c e) ;
60
61 DO_FLOODING:
62 pcn_log (ctx , LOG_DEBUG, "Send to c o n t r o l l e r ") ;
63 pcn_pkt_control ler (ctx , md, REASON_FLOODING) ;
64 return RX_DROP;
65 }

Listing 4.5: DP of the Polycube L2 Switch NF.

4.8 Evaluation
In this section we evaluate the performance of a set of Polycube NFs and we

compare the results with existing in-kernel implementations. Fist, we measure
the performance of standalone Polycube NFs and then we move to more complex
scenarios where chains of NFs are involved (section 4.8.2). Finally, we evaluate the
overhead imposed by Polycube programming model when compared to baseline
programs written using the vanilla eBPF (section 4.8.3).

4.8.1 Setup
We run our experiments into a server equipped with an Intel Xeon Gold 5120

14-cores CPU @2.20GHz (hyper-threading disabled) 19.25 MB of L3 cache and
two 32GB RAM modules. The packet generator is equipped with an Intel Xeon
CPU E3-1245 v5 4-cores CPU @3.50GHz (8 cores with hyper-threading), 8MB of
L3 cache and two 16GB RAM modules. We used Pktgen-DPDK [55] to generate
64-bytes UDP packets and to count the received packets. In fact, each server has
a dual-port Intel XL710 40Gbps NIC, directly connected to the corresponding one
of the other server. Both servers run Ubuntu 18.04.1 LTS, with the DUT running
kernel v5.6 and the eBPF JIT flag enabled (the default behavior for newer kernels).

57

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (M

pp
s)

of Cores

brctl
ovs
pcn-bridge (TC)
pcn-bridge (XDP)

Figure 4.6: Packet forwarding throughput comparison between Polycube pcn-bridge
NF (in both XDP and TC mode) and “standard” Linux implementation such as
Linux bridge (btctl) and OpenvSwitch (ovs).

4.8.2 Test Applications
4.8.2.1 Case Study 1: L2 Switch

In this test scenario, we evaluate the performance of a Polycube NF that em-
ulates the behavior of a fully functional L2 switch with support for VLAN and
Spanning Tree Protocol (STP). The pcn-bridge data plane is implemented entirely
in eBPF, including the MAC Learning phase. More complex functionalities such as
the handling of STP protocol BPDUs or flooding, as results of a miss in the filtering
database, are relegated to the slow-path, given the impossibility of performing such
actions entirely in eBPF. We measure the UDP forwarding performance between
pcn-bridge and commonly used L2 switch Linux tools such as Linux bridge (v1.5)

58

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (M

pp
s)

of Cores

ipvs
katran
pcn-lbdsr (TC)
pcn-lbdsr (XDP)

Figure 4.7: Throughput performance between a Polycube load balancer NF (i.e.,
pcn-lbdsr), ipvs, the standard L4 load balancing software inside the Linux kernel
and Katran, an XDP-based load balancer developed by Facebook.

and OpenvSwitch (v2.13) 3. We can clearly notice, from Figure ??, that pcn-bridge
outperforms the other tools in both TC and XDP mode, with a performance gain
of about 3.6x for the latter. The advantages of XDP are more evident since packets
are processed directly at driver level, avoiding the overhead given by the allocation
of kernel data structures, which may be unnecessary for the simple forwarding use
case. Moreover, we can notice how the performance of our pcn-bridge NF scale lin-
early with the number of cores used, reaching 10Gbps throughput with 64B packets
with six cores involved4.

3All the tests with OpenvSwitch have been carried out on kernel v5.0 since it does not support
earlier versions.

4To gradually use all cores, we have configured the hardware filtering on the NIC (i.e., Flow
Director rules) to redirect different flows to distinct NIC’s RX queues.

59

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

4.8.2.2 Case Study 2: Load Balancer

In this test, we measure the performance of a Polycube load balancer NF (i.e.,
pcn-lbdsr). As for the previous scenario, this NF is implemented as a single µCube,
with the data plane entirely handled in eBPF (no slow-path is involved). Poly-
cube pcn-lbdsr can be configured with a list of virtual IPs (VIP), each one with
an associated list of back-ends; we use the Maglev [57] hash to select the back-end
server, which provides a better resilience to back-end server failures, a better dis-
tribution of the traffic load among the back-ends and the possibility to set different
weights for each back-end server. To test this scenario, we used a fixed number of
hosts5, as we compared the throughput results with IPVS v1.28 and Katran [76],
an eBPF/XDP-based load-balancer developed and released as open-source by Face-
book. Figure 4.7 shows the results of this test, with both pcn-lbdsr in TC and XDP
mode that outperform ipvs by a factor of 2.2x and 6.5x respectively. Moreover, we
want to notice that pcn-lbdsr in XDP mode offers performance comparable (or even
higher) with Katran. This results is mainly given by the heavy use the Polycube
NFs make of the dynamic reloading feature, which allows the NF to better adapt
to the runtime configuration by compiling out features that are not required at
runtime, hence, improving the overall data plane performance. The other big dif-
ference is that Katran is a standalone application built only for the load-balancing
use case; on the other hand, Polycube offers a general framework to build and cre-
ate complex NF chains, allowing to create more complex network typologies, while
still providing performance comparable with “native” eBPF implementations.

4.8.2.3 Case Study 3: Firewall

The Polycube pcn-firewall NF is implemented as a series a µCubes that compose
the entire firewall pipeline (even in this case, the slow path is not involved). It
implements the Linear Bit Vector Search (LBVS) [98] classification algorithm to
filter packets, with a sequence of µCubes each one in charge of handling specific
fields of the packet (e.g., IP source, destination, protocol, etc.)6. Moreover, it is
also able to “communicate” with the Linux routing table to check the next hop
address before forwarding a packet to the egress interface7. For this test we used
a synthetic ruleset generated by classbench [155], with all the rules matching the
TCP/IP 5-tuple. The default rule of the firewall is to drop all the traffic, while

5We used the same configuration of [75] for the load balancer use case, setting one virtual IP
per CPU core and 100 back-end servers for each VIP.

6A more detailed explanation of the Polycube firewall architecture is provided in [115], whose
data and control plane has been implemented as a standalone Polycube network service.

7eBPF provides a specific helper that can be used to lookup the FIB Linux table directly from
the XDP code.

60

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (M

pp
s)

of Cores

iptables
nftables
ovs (openflow)
pcn-firewall

Figure 4.8: Throughput performance comparing with 1000 rules between a Poly-
cube firewall NF (i.e., pcn-firewall), iptables and nftables, which are two commonly
used Linux firewalls and OpenvSwitch (ovs) with OpenFlow rules.

only the matching flows are “allowed” and redirected to the second interface of the
DUT. The generated traffic is uniformly distributed among all the rules so that all
generated packets should be forwarded.

We compare the performance of pcn-firewall with both iptables and nftables,
the most used packet filtering software used in the Linux subsystem today. Then,
we also load the same ruleset as a set of OpenFlow rules in the OpenvSwitch
pipeline8 and we measure the performance under the same conditions mentioned
before. The results are shown in Figure 4.8. Even in this case, we can clearly see
how pcn-firewall outperforms the existing solutions by a 31.8x, 7.5x and 1.4x factor
respectively for nftables, iptables and ovs. The reason of this is twofold. First, pcn-
firewall implements a faster classification algorithm compare to the linear scanning
implemented by Linux-native firewalls and second, it can adopt more aggressive

8To generate the OpenFlow rules we used Classbench-ng [7966918].

61

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

Datacenter network (L3)

Node 1

Pod1 PodN
192.168.1.3/24

App1 App1

Physical node IP
130.192.225.143/24

Node 2

Node 3

VxLAN
overlay
networkLinux

networking
stack

(Routing +
Natting)

192.168.1.1

eth0

pcn-router

pcn-nat

pcn-bridge

192.168.1.X/24

19
2.

16
8.

1.
0/

24

19
2.

16
8.

2.
0/

24
19

2.
16

8.
3.

0/
24

pcn-lbpcn-lb

pcn-fw

Figure 4.9: Architecture of the Polycube K8s plugin.

optimizations thanks to the dynamic reloading feature of Polycube, allowing the
control plane to specialize the packet processing behavior depending on the actual
firewall configuration (e.g., the deployed ruleset).

4.8.2.4 Case Study 4: K8s Network Provider

To demonstrate the capability of Polycube to enable the creation of complex
applications created by chaining different network functions together, we present a
real world use case that can be implemented within Polycube and the type of per-
formance improvements that we can expect. In particular, we implemented a CNI
plugin for Kubernetes [82], one of the most important open source orchestration
system for containerized applications. A K8s network provider must implement
Pod-to-Pod communication9, provide support for ClusterIP services10 and security
policies; our prototype supports all of them. Our overall design includes the five
different components: a NAT NF (pcn-nat), a L3 routing module (pcn-router), a

9A Pod is the smallest manageable unit in a k8s cluster and is composed of a group of one or
more containers sharing the same network.

10A ClusterIP is a type of service that is only accessible within a Kubernetes cluster through
a virtual IP. When a Pod communicates with this virtual IP, the request can be mapped to an
arbitrary Pod running within the same physical host or into another one.

62

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

 0

 10

 20

 30

 40

 50

 60

Same Different

Th
ro

ug
hp

ut
 (G

bp
s)

Pod Location

polycube
calico v3.3
cilium v1.3

kube-router
romana

weavenet

Figure 4.10: Performance of different
k8s network providers for direct Pod
to Pod communication.

 0

 10

 20

 30

 40

 50

 60

Same Different

Th
ro

ug
hp

ut
 (G

bp
s)

Pod Location

polycube
calico v3.3
cilium v1.3

kube-router
romana

weavenet

Figure 4.11: Performance of differ-
ent k8s network providers for Pod to
ClusterIP communication.

L2 switch application (pcn-bridge), a load balancer (pcn-lb) and a firewall compo-
nent (pcn-firewall). These NFs are chained together by means of Polycube APIs, as
shown in Figure 4.9, and are configured to support the main operations required by
the k8s network plugin interface. Tests were carried out on a 3-node cluster, a mas-
ter and two workers with Linux kernel v4.15, Intel Xeon CPU E3-1245v5 @3.50GHz
with dual-port Intel XL710 40Gbps NIC cards connected point-to-point. We re-
port the TCP throughput measured with iperf3 using the default parameters;
the server was always running in a Pod, while the client was either in a physical
machine or in another Pod depending on the test.

In Figure 4.10 and 4.11 we asses the performance of our Polycube network
provider compared to other existing solutions. In particular, we consider the Pod-
to-Pod connectivity and the Pod-to-ClusterIP connectivity. Results show that the
Polycube k8s plugin reaches 15-20% higher throughput than other solutions in the
case server and client are on the same node. When pods are on different nodes, the
advantage of the plugin becomes less evident because of the influence of the physical
network, but still better than other solutions. Indeed, those providers often relies
on existing kernel components, such as iptables and Linux bridge, that we proved
in the previous case to be less efficient than the Polycube counterparts.

Although our k8s plugin achieves better performance than the others in the two
cases under consideration, it is always comparable in terms of functionality with
the existing solutions, which are both more stable and complete. The main purpose
here is to demonstrate the generality of the Polycube programming model and the
performance benefits that can be obtained from eBPF-based NFs.

63

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

4.8.3 Framework Overheads
In this section we evaluate the overheads imposed by Polycube programming

model when compared to baseline eBPF programs written outside the Polycube
environment.

4.8.3.1 Overhead for simple NFs

To measure the baseline performance and the overhead introduced by the Poly-
cube abstraction model to a single NF, we implemented the same operations per-
formed by the xdp_redirect application [46], available under the Linux samples,
as a standalone NF inside the Polycube framework (i.e., pcn-simplefwd). The
application receives traffic from a given interface and, after swapping the source
and destination L2 addresses of the packet, redirects it to a second interface.

Application Through. LoC (FP) LoC (S/CP)
xdp_redirect 6.97Mpps 64 176
tc_redirect 1.60Mpps 53 56
pcn-simplefw (XDP) 6.86Mpps 17 0
pcn-simplefw (TC) 1.55Mpps 17 0

Table 4.3: Comparison between vanilla-eBPF applications and a Polycube network
function. All throughput results are single-core.

Table 4.3 shows a comparison between two very simple vanilla eBPF applications
and a Polycube NF that performs the same operations, attached to either XDP or
Traffic Control (TC) hooks. As we can notice, Polycube introduces a very small
overhead compared to vanilla eBPF applications (6.86Mpps vs 6.97Mpps), which
is required to provide the abstractions mentioned before (e.g., virtual ports). This
is mainly given by the additional processing that happens before and after calling
the fast path of the NF, which is totally hidden to the NF developer. As result,
the number of LoC for both the fast-path (FP) and the slow and control path
(S/CP) is considerably reduced, allowing the developer to focus on the core logic of
the program and leaving the common tasks and the possible optimizations to the
Polycube daemon. Note also that the sample vanilla applications that we are taking
into account are extremely simple; for more complex applications, a developer using
vanilla-eBPF has to implement, for example, the entire fast-slow path interaction,
which requires a non-negligible amount of effort.

4.8.3.2 Overhead for chain of NFs

Figure 4.12 shows the overhead introduced by the Polycube service chain com-
pared to the standard eBPF tail call mechanism. Of course, eBPF does not support

64

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

of NFs

eBPF Tail Call
Cube Chain

µCube Chain

Figure 4.12: Overhead of the Polycube service chain compared to the standard
eBPF tail call mechanism.

any type of abstraction required by a NF framework; a tail call performs only an
indirect jump from one eBPF program to another. On the other hand, Polycube
uses a set of additional components and abstractions that are executed before a
packet enters and leaves a NF, e.g., to ensure isolation or virtual port abstraction.
This additional overhead is more evident when a packet runs through an increasing
number of virtual Cubes but it is necessary to ensure the correct execution of the
NF chain. On the other hand, if the same Cube is composed by a set of µCubes
the overhead of crossing different µCubes is almost negligible, reflecting the same
behavior of the tail call mechanism in the “standard” eBPF approach.

4.8.4 Polycube vs Userspace Frameworks
The difference between kernel and user-space networking is well-known in the

literature, with pro and cons on both sides that we partially explored in Section 2.
Høiland-Jørgensen et al. [75] have analyzed the performance differences between

65

4 – Polycube: A Framework for Flexible and Efficient In-Kernel Network Services

XDP and DPDK, showing a gap between the two approaches in favor of the lat-
ter; our tests (not reported here for the sake of brevity) simply confirm previous
results. This overhead is almost inevitable, and is mainly given by the generality
of the Linux operating system, which is structured in a way that make it easier
to support different systems and configurations. Edeline et al. [56] have evalu-
ated their userspace VPP [44] based middlebox framework, called mmb, against
eBPF/XDP-based middlebox implementations, concluding how the latter makes a
good in-kernel alternative for their solution. Polycube fills this gap, introducing a
negligible overhead over the vanilla-eBPF subsystem (??), but greatly simplifying
both the development and execution of chains of such in-kernel network services.

4.9 Conclusions
In this Chapter we have presented Polycube, a framework for developing, de-

ploying and managing in-kernel virtual network functions. While most of the NFV
framework today rely on kernel-bypass approaches, allowing userspace applications
to directly access the underlying hardware resources, Polycube brings all the ad-
vantages and power of NFV to the work of in-kernel packet processing. It exploits
the eBPF subsystem available in the Linux kernel to dynamically inject custom
user-defined applications into specific points of the Linux networking stack, provid-
ing an unprecedented level of flexibility and customization that would have been
unthinkable before. In addition, Polycube has been created with in mind the new
requirements brought by the microservice evolution in cloud computing. Polycube
services follow the same continuous delivery development of server applications and
being able to adapt to continuous configuration and topology changes at runtime,
thanks to the possibility to dynamically inject and update existing services without
any traffic disruption. At the same time, they offer a level of integration and co-
existence with the “traditional” ecosystem that is difficult and inefficient to achieve
with kernel-bypass solutions, enabling a high level of introspection and debugging
that are fundamental in this environment.

We have implemented a vast range of applications with Polycube and shown
that it is not only easy to deploy and to program but also improves network per-
formance of existing in-kernel solutions. Polycube adds a very small overhead
compare to vanilla eBPF applications but provides several abstractions that sim-
plify the programming and deployment of new services and enables the creation of
complex typologies by concatenating different services together, while maintaining
and improving performance.

66

Chapter 5

Accelerating Linux Security with
eBPF iptables

5.1 Introduction
Nowadays, the traditional network security features of a Linux host are centered

on iptables, which allows applying different security policies to the traffic, such
as to protect from possible network threats or to prevent specific communication
patterns between different machines. Starting from its introduction in kernel v2.4.0,
iptables remained the most used packet filtering mechanism in Linux, despite
being strongly criticized under many aspects, such as for its far from cutting-edge
matching algorithm (i.e., linear search) that limits its scalability in terms of number
of policy rules, its syntax, not always intuitive, and its old code base, which is
difficult to understand and maintain. In the recent years, the increasing demand
of network speed has led to the consciousness that the current implementation
may not be able to cope with the modern requirements particularly in terms of
performance, flexibility, and scalability [68].

Nftables [47] was proposed in 2014 with the aim of replacing iptables; it
reuses the existing netfilter subsystem through an in-kernel virtual machine ded-
icated to firewall rules, which represents a significant departure from the iptables
filtering model. Although this yields advantages over its predecessor, nftables
(and other previous attempts such as ufw [161] or nf-HiPAC [117]) did not have
the desired success, mainly due to the reluctance of the system administrators to
adapt their existing configurations (and scripts) operating on the old framework
and move into the new one [48]. This is also highlighted by the fact that the ma-
jority of today’s open-source orchestrators (e.g., Kubernetes [82], Docker [81]) are
strongly based on iptables.

Recently, another in-kernel virtual machine has been proposed, the extended
BPF (eBPF) [8, 151, 65], which offers the possibility to dynamically generate, in-
ject and execute arbitrary code inside the Linux kernel, without the necessity to

67

5 – Accelerating Linux Security with eBPF iptables

install any additional kernel module. eBPF programs can be attached to different
hook points in the networking stack such as eXpress DataPath (XDP) [75] or Traf-
fic Control (TC), hence enabling arbitrary processing on the intercepted packets,
which can be either dropped or returned (possibly modified) to the stack. Thanks
to its flexibility and excellent performance, functionality, and security, recent ac-
tivities on the Linux networking community have tried to bring the power of eBPF
into the newer nftables subsystem [14]. Although this would enable nftables to
converge towards an implementation of its VM entirely based on eBPF, the pro-
posed design does not fully exploit the potential of eBPF, since the programs are
directly generated in the kernel and not in userspace, thus losing all the separa-
tion and security properties guaranteed by the eBPF code verifier that is executed
before the code is injected in the kernel.

On the other hand, bpfilter [29] proposes a framework that enables the trans-
parent translation of existing iptables rules into eBPF programs; system admin-
istrators can continue to use the existing iptables-based configuration without
even knowing that the filtering is performed with eBPF. To enable such design,
bpfilter introduces a new type of kernel module that delegates its functionality
into user space processes, called user mode helper (umh), which can implement the
rule translation in userspace and then inject the newly created eBPF programs in
the kernel. Currently, this work focuses mainly on the design of a translation ar-
chitecture for iptables rules into eBPF instructions, with a small proof of concept
that shows the advantages of intercepting (and therefore filtering) the traffic as
soon as possible in the kernel, and even in the hardware (smartNICs) [160].

The work presented in this Chapter continues along the bpfilter proposal of
creating a faster and more scalable clone of iptables, but with the following two
additional challenges. First is to preserve the iptables filtering semantic.
Providing a transparent replacement of iptables, without users noticing any dif-
ference, imposes not only the necessity to respect its syntax but also to implement
exactly its behavior; small or subtle differences could create serious security prob-
lems for those who use iptables to protect their systems. Second is to improve
speed and scalability of iptables; in fact, the linear search algorithm used for
matching traffic is the main responsible for its limited scalability particularly in the
presence of a large number of firewall rules, which is perceived as a considerable
limitation from both the latency and performance perspective.

Starting from the above considerations, this Chapter presents the design of an
eBPF-based Linux firewall, called bpf-iptables, which implements an alternative
filtering architecture in eBPF, while maintaining the same iptables filtering se-
mantic but with improved performance and scalability. bpf-iptables leverages
XDP [75] to provide a fast path for packets that do not need additional processing
by the Linux stack (e.g., packets routed by the host) or to discard traffic as soon
as it comes to the host. This avoids useless networking stack processing for packets
that must be dropped by moving some firewall processing off the host CPU entirely,

68

5 – Accelerating Linux Security with eBPF iptables

while still leveraging the rest of the kernel infrastructure to route packets between
the different network interfaces.

Our contributions are: (i) the design of bpf-iptables; it provides an overview
of the main challenges and possible solutions in order to preserve the iptables
filtering semantic given the difference, from hook point perspective, between eBPF
and netfilter. To the best of our knowledge, bpf-iptables is the first application
that provides an implementation of the iptables filtering in eBPF. (ii) A compre-
hensive analysis of the main limitations and challenges required to implement a fast
matching algorithm in eBPF, keeping into account the current limitations chapter 3
of the above technology. (iii) A set of data plane optimizations that are possible
thanks to the flexibility and dynamic compilation (and injection) features of eBPF,
allowing us to create at runtime an optimized data path that fits perfectly with the
current ruleset being used.

This Chapter presents the challenges, design choices and implementation of bpf-
iptables and it compares with existing solutions such as iptables and nftables.
We take into account only the support for the FILTER table, while we leave as future
work the support for additional features such as NAT or MANGLE, although they can
easily implemented by concatenating different eBPF-based network services that
implement such functionalities, as presented in Chapter 4.

5.2 Design Challenges and Assumptions
This Section introduces (i) the main challenges encountered while designing

bpf-iptables, mainly derived from the necessity to emulate the iptables behavior
with eBPF, and (ii) our initial assumptions for this work, which influenced some
design decisions.

5.2.1 Guaranteeing filtering semantic
The main difference between iptables and bpf-iptables lies in their underly-

ing frameworks, netfilter and eBPF respectively. Iptables defines three default
chains for filtering rules associated to the three netfilter hooks [135] shown in
Figure 5.1, which allow to filter traffic in three different locations of the Linux net-
working stack. Particularly, those hook points filter traffic that (i) terminates on
the host itself (INPUT chain), (ii) traverses the host such as when it acts as a router
and forwards IP traffic between multiple interfaces (the FORWARD chain), and (iii)
leaves the host (OUTPUT chain).

On the other hand, eBPF programs can also be attached to different hook
points. As shown in Figure 5.1, ingress traffic is intercepted in the XDP or traf-
fic control (TC) module, hence earlier than netfilter; the opposite happens for
outgoing traffic, which is intercepted later than netfilter. The different location

69

5 – Accelerating Linux Security with eBPF iptables

PREROUTING INPUT FORWARD OUTPUT POSTROUTING

netfilter

NAT

Routing
Decision

FILTER

FILTER

Routing
Decision NAT

Routing
Decision

NAT

FILTER

iptables (netfilter)
filtering hook

eBPF TC hook

eBPF XDP hook

Local
processes

netdev
(e.g., eth0)

netdev
(e.g., eth1)

eBPF
program

eBPF
program

skb
alloc

Figure 5.1: Location of netfilter and eBPF hooks.

of the filtering hooks in the two subsystems introduces the challenge of preserving
the semantic of the rules, which, when enforced in an eBPF program, operate on a
different set of packets compared to the one that would cross the same netfilter
chain. For example, rule “iptables -A INPUT -j DROP” drops all the incoming
traffic crossing the INPUT chain, hence directed to the current host; however, it does
not affect the traffic forwarded by the host itself, which traverses the FORWARD chain.
A similar “drop all” rule, applied in the XDP or TC hook, will instead drop all the
incoming traffic, including packets that are forwarded by the host itself. As a con-
sequence, bpf-iptables must include the capability to predict the iptables chain
that would be traversed by each packet, maintaining the same semantic although
attached to a different hook point.

5.2.2 Efficient classification algorithm in eBPF
The selection and implementation of a better matching algorithm proved to be

challenging due to the intrinsic limitations of the eBPF environment chapter 3. In
fact, albeit better matching algorithms are well-known in the literature (e.g., cross-
producting [148], decision-tree approaches [53, 147, 144, 130, 71, 159]), they require
either sophisticated data structures that are not currently available in eBPF1 or an
unpredictable amount of memory, which is not desirable for a module operating at

1eBPF programs do not have the right to use traditional memory; instead, they need to rely
on a limited set of predefined memory structures (e.g., hash tables, arrays, and a few others),
which are used by the kernel to guarantee safety properties and possibly avoid race conditions.
As a consequence, algorithms that require different data structures are not feasible in eBPF.

70

5 – Accelerating Linux Security with eBPF iptables

the kernel level. Therefore, the selected matching algorithm must be efficient and
scalable, but also feasible with the current eBPF technology.

5.2.3 Support for stateful filters (conntrack)
Netfilter tracks the state of TCP/UDP/ICMP connections and stores them

in a session (or connection) table (conntrack). This table can be used by iptables
to support stateful rules that accept/drop packets based on the characteristic of
the connection they belong to. For instance, iptables may accept only outgoing
packets belonging to NEW or ESTABLISHED connections, e.g., enabling the host to
generate traffic toward the Internet (and to receive return packets), while connec-
tions initiated from the outside world may be forbidden. As shown in Figure 5.1,
bpf-iptables operates before packets enter in netfilter; being unable to exploit
the Linux conntrack module to classify the traffic, it has to implement its own
equivalent component (Section 5.4.5.)

5.2.4 Working with upstream Linux kernel
Our initial assumption for this work is to operate with the existing Linux kernel

in order to bring the advantages of bpf-iptables to the wider audience as soon as
possible. In fact, the process required by the Linux kernel community to agree with
any non-trivial code change and have them available in a mainline kernel is rather
long and may easily require more than one year. This assumption influenced, in
some cases, the design choices taken within bpf-iptables (e.g., the definition of
a new conntrack in eBPF instead of relying on the existing Linux one); we further
analyze this point in Section 5.7, providing a discussion of the possible modification
to the eBPF subsystem that could further improve bpf-iptables.

5.3 Overall Architecture
Figure 5.2 shows the overall system architecture of bpf-iptables. The data

plane includes four main classes of eBPF programs. The first set (blue) implements
the classification pipeline, i.e., the ingress, forward or output chain; a second set
(yellow) implements the logic required to preserve the semantics of iptables; a
third set (orange) is dedicated to connection tracking. Additional programs (grey)
are devoted to ancillary tasks such as packet parsing.

The ingress pipeline is called upon receiving a packet either on the XDP or
TC hook. By default, bpf-iptables works in XDP mode, attaching all the eBPF
programs to the XDP hook of the host’s interfaces. However, this requires the

71

5 – Accelerating Linux Security with eBPF iptables

Ingress pipeline

From netdev
(e.g., eth0)

To netdev
(e.g., eth1)

TC egress hook
To Linux

TCP/IP stack
From Linux
TCP/IP stack

Netfilter Netfilter

X
D

P

in
gr

es
s

h
o

o
k

IP
 in

p
u

t
p

ro
ce

ss
in

g

IP
 o

u
tp

u
t

p
ro

ce
ss

in
g

FIB
Lookup

Header
Parser

Ingress Chain
Selector

INGRESS
CHAIN

FORWARD
CHAIN

[local dst] Conntrack
Update

Conntrack
Update[remote dst]

Conntrack
Label

Headers
Destination

Chain
Flow State Flow StateHeader, Flow

State, etc…

Packet metadata (per-CPU map shared across the entire pipeline)

Redirect
program

Redirect
program

Conntrack
Table

Lookup
Lookup
failed

Update

Egress pipeline

Header
Parser

Egress Chain
Selector

OUTPUT
CHAIN

[local src] Conntrack
Update

Conntrack
Label

Headers Destination
Chain

Flow State
Header, Flow
State, etc…

[remote src]

Lookup

Packet metadata (per-CPU map shared across the entire pipeline)

TC ingress hook

Redirect
program

Figure 5.2: High-level architecture of bpf-iptables.

explicit support for XDP in the NIC drivers2; bpf-iptables automatically falls
back to the TC mode when the NIC drivers are not XDP-compatible. In the latter
case, all the eBPF programs composing the ingress pipeline are attached to the TC
hook. The egress pipeline is instead called upon receiving a packet on the TC egress
hook, before the packet leaves the host, as XDP is not available in egress [39].

Once in the ingress pipeline, the packet can enter either the INPUT or FORWARD
chain depending on the routing decision; in the first case, if the packet is not
dropped, it will continue its journey through the Linux TCP/IP stack, ending up
in a local application. In the second case, if the FORWARD pipeline ends with an
ACCEPT decision, bpf-iptables redirects the packet to the target NIC, without
returning it to the Linux networking stack (more details in Section 5.4.4.2). On the
other hand, a packet leaving the host triggers the execution of bpf-iptables when
it reaches the TC egress hook, where it will be processed by the OUTPUT chain.

Finally, a control plane module (not depicted in Figure 5.2) is executed in
userspace and provides three main functions: (i) initialization and update of the
bpf-iptables data plane, (ii) configuration of the eBPF data structures required
to run the classification algorithm and (iii) monitoring for changes in the number
and state of available NICs, which is required to fully emulate the behavior of
iptables, handling the traffic coming from all the host interfaces. We will describe
the design and architecture of the bpf-iptables data plane in Section 5.4, while
the operations performed by the control plane will be presented in Section 5.5.

2NIC driver with native support for XDP can be found at [36].

72

5 – Accelerating Linux Security with eBPF iptables

5.4 Data plane
In the following subsections we present the different components belonging to

the bpf-iptables data plane, as shown in Figure 5.2.

5.4.1 Header Parser
The bpf-iptables ingress and egress pipelines start with a Header Parser mod-

ule that extracts the packet headers required by the current filtering rules, and
stores each field value in a per-CPU array map shared among all the eBPF pro-
grams in the pipeline, called packet metadata. This avoids the necessity of packet
parsing capabilities in the subsequent eBPF programs and guarantees both better
performance and a more compact processing code. The code of the Header Parser
is dynamically generated on the fly; when a new filtering rule that requires the pars-
ing of an additional protocol field is added, the control plane re-generates, compiles
and re-injects the obtained eBPF program in the kernel in order to extract also the
required field. As a consequence, the processing cost of this block is limited exactly
to the number of fields that are currently needed by the current bpf-iptables rules.

5.4.2 Chain Selector
The Chain Selector is the second module in the data plane whose role is to

classify and forward the traffic to the correct classification pipeline (i.e., chain),
according to the iptables semantic (Section 5.2.1). It anticipates the routing
decision that would have been performed later in the TCP/IP stack and predicts
the right chain that will be hit by the current packet. The traffic coming from
a network interface would cross the INPUT chain only if it is directed to a local
IP address, visible from the host root namespace, while incoming packets directed
to a non-local IP address would cross the FORWARD chain. On the other hand, an
outgoing packet traverses the OUTPUT chain only if it has been generated locally,
i.e., by a local IP address. To achieve this behavior, bpf-iptables uses a separate
Chain Selector module for the ingress and egress pipeline.

The Ingress Chain Selector checks if the destination IP address of the incoming
packet is present in the BPF_HASH map that keeps local IPs and writes the resulting
target chain in the packet metadata per-CPU map shared across the entire pipeline.
This value is used by the next module of the chain (i.e., the conntrack) to jump to
the correct target chain. On the other hand, the Egress Chain Selector, which is part
of the egress pipeline, classifies traffic based on the source IP address and sends
it to either the OUTPUT chain or directly to the output interface. In fact, traffic
traversing the FORWARD chain has already been matched in the ingress pipeline,
hence it should not be handled by the OUTPUT chain.

73

5 – Accelerating Linux Security with eBPF iptables

5.4.3 Matching algorithm
To get over the linear search performance of iptables, bpf-iptables adopts

the more efficient Linear Bit-Vector Search (LBVS) [98] classification algorithm.
LBVS provides a reasonable compromise between feasibility and speed; it has an
intrinsic pipelined structure which maps nicely with the eBPF technology, hence
enabling the optimizations presented in Section 5.4.4.2. The algorithm follows the
divide-and-conquer paradigm: it splits filtering rules in multiple classification steps,
based on the number of protocol fields in the ruleset; intermediate results that carry
the potentially matching rules are combined to obtain the final solution.

Classification. LBVS requires a specific (logical) bi-dimensional table for each
field on which packets may match, such as the three fields shown in the example
of Figure 5.3. Each table contains the list of unique values for that field present
in the given ruleset, plus a wildcard for rules that do not care for any specific
value. Each value in the table is associated with a bitvector of length N equal
to the number of rules, in which the ith ‘1’ bit tells that rule i may be matched
when the field assumes that value. Filtering rules, and the corresponding bits in the
above bitvector, are ordered with highest priority rule first. The matching process is
repeated for each field we operate with, such as the three fields shown in Figure 5.3.
The final matching rule can be obtained by performing a bitwise AND operation on
all the intermediate bitvectors returned in the previous steps and determining the
most significant ‘1’ bit in the resulting bitvector. This represents the matched
rule with the highest priority, which corresponds to rule #1 in the example in
Figure 5.3. Bitmaps enable the evaluation of rules in large batches, which depend
on the parallelism of the main memory; while still theoretically a linear algorithm,
this scaling factor enables a 64x speedup compared to a traditional linear search
on common CPUs.

5.4.4 Classification Pipeline
The bpf-iptables classification pipeline (Figure 5.4) is in charge of filtering

packets according to the rules configured for a given chain. It is made by a sequence
of eBPF programs, each one handling a single matching protocol field of the current
ruleset. The pipeline contains two per-CPU shared maps that keep some common
information among all the programs, such as the temporary bitvector containing
the partial matching result, which is initialized with all the bits set to ‘1’ before a
packet enters the pipeline.

Each module of the pipeline performs the following operations: (i) extracts the
needed packet fields from the packet metadata map, previously filled by the Header
Parser module; (ii) performs a lookup on its private eBPF map to find the bitvector

74

5 – Accelerating Linux Security with eBPF iptables

...

Value
Matched
rules

* 00001

80 11001

53 00111

Value
Matched
rules

* 01001

TCP 11011

UDP 01101

Values
Matched
rules

0/0 11110

10.0.0.0/8 11111

...

Input packet:

ip.dst=10.1.0.1

ip.proto= TCP

tcp.dport= 80

Dest. IP Protocol Dest. port

Rule #1: iptables –A INPUT –p tcp --dport 80 –j ACCEPT

Rule #2: iptables –A INPUT --dport 80 –j ACCEPT

Rule #3: iptables –A INPUT –p udp --dport 53 –j ACCEPT

Rule #4: iptables –A INPUT –p tcp --dport 53 –j ACCEPT

Rule #5: iptables –A INPUT –d 10.0.0.0/8 –j ACCEPT

Default rule: iptables -P INPUT DROP

11111 & 11011 & 11001 = 11001

 Rule #1

Figure 5.3: Linear Bit Vector Search

associated to the current packet value for that field. If the lookup succeeds, (iii-
a) it performs a bitwise AND between this bitvector and the temporary bitvector
contained in the per-CPU map. If the lookup fails and there is a wildcard rule, (iii-
b) the AND is performed between the bitvector associated with the wildcard rules
and the one present in the per-CPU map. Instead, (iii-c) if the lookup fails and
there are no wildcard rules for that field, we can immediately conclude that the
current packet does not match any rule within the ruleset; hence, we can exploit
this situation for an early break of the pipeline (Section 5.4.4.2). Finally, except
the last case, (iv) it saves the new bitvector in the shared map and calls the next
module of the chain.

Bitvectors comparison. Since each matching rule is represented as a ‘1’ in the
bitvector, bpf-iptables uses an array of N 64bit unsigned integers to support
a large number of rules (e.g., 2.048 rules can be represented as an array of 32
uint64_t). As consequence, when performing the bitwise AND, the current eBPF
program has to perform N cycles on the entire array to compare the two bitvec-
tors. Given the lack of loops on eBPF, this process requires loop unrolling and is
therefore limited by the maximum number of possible instructions within an eBPF
program, thus also limiting the maximum number of supported rules. The neces-
sity to perform loop unrolling is, as consequence, the most compelling reason for

75

5 – Accelerating Linux Security with eBPF iptables

…

eBPF program #1

Packet

ip.src
lookup

tmp_bitv
&=

bitvN;

[percpu_array shared across the entire bpf-iptables pipeline]

* bitv1
1.* bitv2
12.0.* bitv3
5.4.2.* bitv4

eBPF program #2

port.dst
lookup

tmp_bitv
&=

bitvN;

443 bitv1
8080 bitv2
9673 bitv3ta

il
ca

ll

Action Lookup

Search first
matching

rule

ACTION
(drop /
accept)

rule1 act1
rule2 act2
rule3 act3

Map keeping the
action for each rule

[Packet]

[percpu_array shared across the entire classification pipeline]

Packet metadata

ta
il

ca
ll

ta
il

ca
ll

Bitvector with temporary result

BPF_LPM_TRIE BPF_HASH

* bitvW

BPF_ARRAY

Figure 5.4: bpf-iptables classification pipeline.

splitting the classification pipeline of bpf-iptables across many eBPF modules,
instead of concentrating all the processing logic within the same eBPF program.

Action lookup. Once we reach the end of the pipeline, the last program has to
find the rule that matched the current packet. This program extracts the bitvector
from the per-CPU shared map and looks for the position of the first bit to 1 in
the bitvector, using the de Bruijn sequences [102] to find the index of the first
bit set in a single word; once obtained, it uses that position to retrieve the final
action associated with that rule from a given BPF_ARRAY map and finally applies
the action. Obviously, if no rules have been matched, the default action is applied.

5.4.4.1 Clever data sharing

bpf-iptables makes a massive use of eBPF per-CPU maps, which represent
memory that can be shared among different cascading programs, but that exist in
multiple independent instances equal to the number of available CPU cores. This
memory structure guarantees very fast access to data, as it statically assigns a set
of memory locations to each CPU core; consequently, data is never realigned with
other L1 caches present on other CPU cores, hence avoiding the (hidden) hardware
cost of cache synchronization. Per-CPU maps represent the perfect choice in our
scenario, in which multiple packets can be processed in parallel on different CPU

76

5 – Accelerating Linux Security with eBPF iptables

cores, but where all the eBPF programs that are part of the same chain are guar-
anteed to be executed on the same CPU core. As a consequence, all the programs
processing a packet P are guaranteed to have access to the same shared data, with-
out performance penalties due to possible cache pollution, while multiple processing
pipelines, each one operating on a different packet, can be executed in parallel. The
consistency of data in the shared map is guaranteed by the fact that eBPF pro-
grams are never preempted by the kernel (even across tail calls). They can use the
per-CPU map as a sort of stack for temporary data, which can be subsequently ob-
tained from the downstream program in the chain with the guarantees that data are
not overwritten during the parallel execution of another eBPF program on another
CPU and thus ensuring the correctness of the processing pipeline.

5.4.4.2 Pipeline optimizations

Thanks to the modular structure of the pipeline and the possibility to re-
generate part of it at runtime, we can adopt several optimizations that allow (i) to
jump out of the pipeline when we realize that the current packet does not require
further processing and (ii) to modify and rearrange the pipeline at runtime based
on the current bpf-iptables ruleset values.

Early-break. While processing a packet, bpf-iptables can discover in advance
that it will not match any rule. This can happen in two separate cases. The first
occurs when, at any step of the pipeline, a lookup in the bitvector map fails; in such
event, if that field does not have a wildcard value, we can directly conclude that
the current packet will not match any rule. The second case takes place when the
result of the bitwise AND between the two bitvectors is the empty set (all bits set
to 0). In either circumstance, the module that detects this situation can jump out
of the pipeline by applying the default policy for the chain, without the additional
overhead of executing all the following components. If the policy is DROP, the packet
is immediately discarded concluding the pipeline processing; if the default policy is
ACCEPT, the packet will be delivered to the destination, before being processed by
the Conntrack Update module (Section 5.4.5).

Accept all established connections. A common configuration applied in most
iptables rulesets contains an ACCEPT all ESTABLISHED connections as the first rule
of the ruleset. When the bpf-iptables control plane discovers this configuration
in a chain, it forces the Conntrack Label program to skip the classification pipeline
if it recognizes that a packet belongs to an ESTABLISHED connection. Since this
optimization is performed per-chain (we could have different configurations among
the chains), the Conntrack Label module reads the target chain from the packet
metadata per-CPU map previously filled by the Chain Selector and immediately
performs a tail-call to the final connection tracking module that will update the
conntrack table accordingly (e.g., updating the timestamp for that connection).

77

5 – Accelerating Linux Security with eBPF iptables

Optimized pipeline. Every time the current ruleset is modified, bpf-iptables
creates a processing pipeline that contains the minimum (optimal) number of pro-
cessing blocks required to handle the fields of the current ruleset, avoiding un-
necessary processing. For instance, if there are no rules matching TCP flags, that
processing block is not added to the pipeline. New processing blocks can be dynam-
ically added at run-time if the matching against a new field is required. In addition,
bpf-iptables is able to re-organize the classification pipeline by changing the order
of execution of the various components. For example, if some components require
only an exact matching, a match failed on that field would lead to an early-break
of the pipeline; putting those modules at the beginning of the pipeline could speed
up processing, avoiding unnecessary memory accesses and modules.

HOmogeneous RUleset analySis (HORUS). This optimization (that we called
HORUS) is used to (partially) overcome two main restrictions of bpf-iptables:
the maximum number of matching rules, given by the necessity to perform loop
unrolling to compare the bitvectors, and the rule updating time, since we need to
re-compute all the bitvectors when the ruleset is updated. The idea behind HORUS
is based on the consideration that often, firewall rulesets (in particular, the ones
automatically configured by orchestration software), contain a set of homogeneous
rules that operate on the same set of fields. If we are able to discover this set of
“similar” rules that are not conflicting with the previous ones (with higher priority),
we could bring them in front of the matching pipeline for an additional chance of
early-break. In addition, since those rules are independent from the others in
the ruleset, we could compact all their corresponding bits in the bitvectors with
just one, hence increasing the space for other non-HORUS rules. Moreover, adding
(or removing) a HORUS rule does not require to update or even change the entire
matching pipeline, but a single map insertion (or deletion) would be enough, thus
reducing considerably the rule update time. When enabled, the HORUS module is
inserted right before the Conntrack Label on and consists of another eBPF program
with a BPF_HASH table that contains, as key, the set of fields of the HORUS set and,
as value, the final action to apply when a match is found. If the final action is DROP,
the packet is immediately dropped; if the action is ACCEPT, it will directly jump
to the last module of the pipeline, the Conntrack Update. Finally, if no match is
found, HORUS jumps to the first program of the classification pipeline, following the
usual processing path.

An important scenario where HORUS shows its great advantages is under DoS
attacks. In fact, if all the rules of the HORUS ruleset contains a DROP action,
matching packets will be immediately discarded, hence exploiting (i) the early
processing provided by XDP that allows to drop packets at a high rate and (ii)
the ability to run this program on hardware accelerators (e.g., SmartNICs) that
support the offloading of “simple” eBPF programs, further reducing the system
load and the resource consumption, as shown in Chapter 6.

78

5 – Accelerating Linux Security with eBPF iptables

Optimized forwarding. If the final decision for a packet traversing the FORWARD
chain is ACCEPT, it has to be forwarded to the next-hop, according to the routing
table of the host. Since, starting from kernel version 4.18, eBPF programs can query
directly the Linux routing table, bpf-iptables can optimize the path of the above
packet by directly forwarding the packet to the target NIC, shortening its route
within the Linux stack, with a significant performance advantage (Section 5.6). In
the (few) cases in which the needed information are not available (e.g., because the
MAC address of the next hop is not yet known), bpf-iptables will deliver the first
few packets to the Linux stack, following the usual path.

5.4.4.3 Atomic rule update

One of the characteristics of the LBVS classifier is that, whenever a new rule
is added, updated or removed, it needs to re-compute all the bitvectors associated
with the current fields. However, to avoid inconsistency problems, we must update
atomically the content of all maps in the pipeline. Unfortunately, eBPF allows
the atomic update of a single map, while it does not support atomic updates of
multiple maps. Furthermore, defining a synchronization mechanism for the update
(e.g., using locks to prevent traffic being filtered by bpf-iptables) could lead to
unacceptable service disruption given the impossibility of the data plane to process
the traffic in that time interval.

To solve this issue, bpf-iptables exploits the fact that the classification pipeline
is stateless and therefore it creates a new chain of eBPF programs and maps in par-
allel, based on the new ruleset. While this new pipeline is assembled and injected
in the kernel, packets continue to be processed in the initial matching pipeline,
accessing to the current state and configuration; when this reloading phase is com-
pleted, the Chain Selector is updated to jump to the first program of the new chain,
allowing new packets to flow through it. This operation is performed atomically,
enabling the continuous processing of the traffic with a consistent state and without
any service disruption, thanks to a property of the eBPF subsystem that uses a
particular map (BPF_PROG_ARRAY) to keep the addresses of the instantiated eBPF
programs. Finally, when the new chain is up and running, the old one is unloaded.
We discuss and evaluate the performance of the rules update within bpf-iptables,
iptables and nftables in Section 5.6.4.2.

5.4.5 Connection Tracking
To support stateful filters, bpf-iptables implements its own connection track-

ing module, which is characterized by four additional eBPF programs placed in
both ingress and egress pipeline, plus an additional matching component in the
classification pipeline that filters traffic based on the current connection’s state.
These modules share the same BPF_HASH conntrack map, as shown in Figure 5.2.

79

5 – Accelerating Linux Security with eBPF iptables

To properly update the state of a connection, the bpf-iptables conntrack
has to intercept the traffic in both directions (i.e., host to the Internet and vice
versa). Even if the user installs a set of rules operating only on the INPUT chain,
outgoing packets have to be processed, in any case, by the conntrack modules
located in the egress pipeline. The bpf-iptables connection tracking supports
TCP, UDP, and ICMP traffic, although it does not handle advanced features such
as related connections (e.g., when a SIP control session triggers the establishment
of voice/video RTP flows3), nor it supports IP reassembly.
Packet walkthrough. The Conntrack Label module is used to associate a label
to the current packet4 by detecting any possible change in the conntrack table (e.g.,
TCP SYN packet starting a new connection triggers the creation of a new session
entry), which is written into the packet metadata per-CPU map shared within the
entire pipeline. This information is used to filter the packet according to the stateful
rules of the ruleset. Finally, if the packet “survives” the classification pipeline, the
second conntrack program (Conntrack Update) updates the conntrack table with
the new connection state or, in the case of a new connection, it creates the new
associated entry. Since no changes occur if the packet is dropped, forbidden sessions
will never consume space in the connection tracking table.

Conntrack entry creation. To identify the connection associated to a packet,
bpf-iptables uses the packet 5-tuple (i.e., src/dst IP address, L4 protocol, src/dst
L4 port) as key in the conntrack table. Before saving the entry in the table, the
Conntrack Update orders the key as follows:

key = {min(IpSrc, IpDest), max(IpSrc, IpDest), P roto,

min(PortSrc.PortDest), max(PortSrc, PortDest)}
(5.1)

This process allows to create a single entry in the conntrack table for both directions,
speeding up the lookup process. In addition, together with the new connection
state, the Conntrack Update module stores into the conntrack table two additional
flags, ip reverse (ipRev) and port reverse (portRev) indicating if the IPs and the L4
ports have been reversed compared to the current packet 5-tuple. Those information
will be used during the lookup process to understand if the current packet is in the
same direction as the one originating the connection, or the opposite.

3eBPF programs can read the payload of the packet (e.g., [7]), which is required to recognize
related connections. Supporting these features in bpf-iptables can be done by extending the
conntrack module to recognize the different L7 protocol from the packet and inserting the correct
information in the conntrack table.

4The possible labels that the conntrack module associates to a packet are the same defined by
the netfilter framework (i.e., NEW, ESTABLISHED, RELATED, INVALID).

80

5 – Accelerating Linux Security with eBPF iptables

Lookup process. When a packet arrives to the Conntrack Label module, it com-
putes the key for the current packet according to the previous formula and deter-
mines the ip reverse and port reverse flags as before. At this point it performs a
lookup into the conntrack table with this key; if the lookup succeeds, the new flags
are compared with those saved in the conntrack table to detect which direction the
packet belongs to. For instance, if:

(currIpRev != IpRev) && (currPortRev != PortRev) (5.2)
we are dealing with the reverse packet related to the stored session; this is used,
e.g., to mark an existing TCP session as ESTABLISHED, i.e., update its state from
SYN_SENT to SYN_RCVD (Figure 5.5).

Stateful matching module. If at least one rule of the ruleset requires a stateful
match, bpf-iptables instantiates also the Conntrack Match module within the
classification pipeline to find the bitvector associated to the current label. While
this module is present only when the ruleset contains stateful rules, the two con-
nection tracking modules outside the classification pipeline are always present, as
they have to track all the current connections in order to be ready for state-based
rules instantiated at a later time.

TCP state machine. A summary of the TCP state machine implemented in
the connection tracking module is shown in Figure 5.5. The first state transition
is triggered by a TCP SYN packet (all other packets not matching that condition
are marked with the INVALID label); in this case, if the packet is accepted by the
classification pipeline, the new state (i.e., SYN_SENT) is stored into the conntrack
table together with some additional flow context information such as the last seen
sequence number, which is used to check the packet before updating the connection
state. Figure 5.5 refers to forward or reverse packet (i.e., pkt or rPkt) depending on
the initiator of the connection. Finally, when the connection reaches the TIME_WAIT
state, only a timeout event or a new SYN will trigger a state change. In the first
case the entry is deleted from the conntrack table, otherwise the current packet
direction is marked as forward and the new state becomes SYN_SENT.

Conntrack Concurrency. Even though the conntrack table, as all the others
eBPF maps, is protected by the kernel’s RCU mechanism, it is not enough to ensure
the atomicity of the operations performed inside the conntrack module itself. In-
deed, to correctly work, the algorithm presented above assumes that both the direct
and reverse connection are received on the same CPU core, requiring RSS/RPS5

5The Receive Side Scaling (RSS) is a hardware mechanism implemented in the NIC itself to
distribute different flows to multiple receive and transmit descriptor queues, which are gener-
ally mapped to different CPU cores. The Receive Packet Steering (RPS) is logically a software

81

5 – Accelerating Linux Security with eBPF iptables

START

SYN_SENT

Pkt: SYN
SEQ: pktSEQ
Label: NEW

SYN_RCVD

rPkt: SYN
rSEQ: pktSEQ
Label: ESTABLISHED

ESTABLISHEDFIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

LAST_ACK

Pkt/rPkt: *
Label: INVALID

Pkt: SYN
SEQ: pktSEQ
Label: NEW

Pkt/rPkt: *
Label: INVALID

Pkt: ACK
pktAck==rSEQ+1
Label: ESTABLISHED

rPkt: SYN,ACK
pktAck==SEQ+1
rSEQ: pktSEQ
Label: ESTABLISHED

Pkt/rPkt: FIN
SEQ/rSEQ: pktSEQ/rPktSEQ
Label: ESTABLISHED

rPkt/Pkt: ACK
(rpktAck==SEQ+1 ||
pktAck==rSEQ+1)

Label: ESTABLISHED

Pkt/rPkt: *
Label: ESTABLISHED

rPkt/Pkt: FIN
rSEQ/SEQ: rPktSEQ/pktSEQ
Label: ESTABLISHED

rPkt/Pkt: FIN,ACK
(rpktAck==SEQ+1 ||
pktAck==rSEQ+1)

Label: ESTABLISHED

Pkt/rPkt: ACK
(pktAck==rSEQ+1 ||
rPktAck==SEQ+1)

Label: ESTABLISHED

Pkt: *
Label: INVALID

Timeout or SYN

Figure 5.5: TCP state machine for bpf-iptables conntrack. Grey boxes indicate
the states saved in the conntrack table; labels represent the value assigned by the
first conntrack module before the packet enters the classification pipeline.

implementation of RSS and it is used when RSS is not supported by the underlying NIC.

82

5 – Accelerating Linux Security with eBPF iptables

to be enabled on the system. However, this assumption alone it is still not enough
to ensure the correctness the entire conntrack module. In fact, before updating the
value, the Conntrack Update first checks the current state of the packet in the state
machine and then updates the value with the new state. Although the update can
happen atomically through the bpf_map_update() system call, it is not the same
for both operations (check and update), then causing inconsistencies between the
two conntrack modules. bpf-iptables solves this problem by using (for v5.1+
kernels) the bpf_spin_lock mechanism [49, 152], which allows to acquire a lock
on a specific conntrack entry and then perform, atomically, the read and update of
the value.

Conntrack Cleanup. bpf-iptables implements the cleanup of conntrack en-
tries in the control plane, where a dedicated thread checks the presence of expired
sessions. For this reason, the Conntrack Update module updates the timestamp
associated to session each entry when a new packet is received. Since we noticed
that the usage of the bpf_ktime() helper to retrieve the current timestamp causes
a non-negligible performance overhead, we store in a dedicated per-CPU array the
current time every second, which is used by the data plane to timestamp the ses-
sion entries. We are confident that a per-second precision is a reasonable trade-off
between performance and accuracy for this type of application.

5.5 Control plane
This Section describes the main operations of our control plane, which are trig-

gered whenever one of the following events occur.
Start-up. To behave as iptables, bpf-iptables has to intercept all incoming
and outgoing traffic and handle it in its custom eBPF pipeline. When started,
bpf-iptables attaches a small eBPF redirect program to the ingress (and egress)
hook of each host’s interface visible from the root namespace, as shown in Figure 5.2.
This program intercepts all packets flowing through the interface and calls the first
program of the bpf-iptables ingress or egress pipeline. This enables the creation
of a single processing pipeline that handles all the packets, whatever interface they
come from, as eBPF programs attached to a NIC cannot be called from other
interfaces. Finally, bpf-iptables retrieves all local IP addresses active on any
NIC and configures them in the Chain Selector ; this initialization phase is done by
subscribing to the proper set of netlink events.

Netlink notification. When a new netlink notification arrives, bpf-iptables
checks if it relates to specific events in the root namespace, such as the creation of
an interface or the update of an IP address. In the first case, the redirect program

83

5 – Accelerating Linux Security with eBPF iptables

Algorithm 1: Pre-processing algorithm
Input: N , the list of filtering rules

1 Extract K, the set of matching fields used in N
2 foreach ki ∈ K do
3 bi ← # bit of field Ki

4 θi ← {ki,j | ∀j ≤ min (card(N), 2bi)} /* set of distinct values */
5 if ∃ a wildcard rule ∈ N for ki then
6 Add wildcard entry to θi

7 foreach ki,j ∈ θi do
8 bitvectori,j[N]← {0}
9 foreach ni ∈ N do

10 if ki,j ⊆ ni then
11 bitvectori,j[i] = 1

is attached to the eBPF hook of the new interface, enabling bpf-iptables6 to
inspect its traffic. In the second case, we update the list of local IPs used in the
Chain Selector with the new address.

Ruleset changes. When the user updates the ruleset, bpf-iptables starts the
execution of the pre-processing algorithm, which calculates the value-bitvector
pairs for each field; those values are then inserted in the new eBPF maps and
the new programs are created on the parallel chain. The pre-processing algorithm
(pseudo-code in Algorithm 1) works as follows. Let’s assume we have a list of N
packet filtering rules that require exact or wildcard matching on a set of K fields;
(i) for each field ki ∈ K we extract a set of distinct values θi = {ki,1, ki,2, ..., ki,j}
with j ≤ card(N) from the current ruleset N ; (ii) if there are rules that require
wildcard matching for the field ki, we add an additional entry to the set θi that
represents the wildcard value; (iii) for each ki,j ∈ θi we scan the entire ruleset
and if ∀ni ∈ N we have that ki,j ⊆ ni then we set the bit corresponding to the
position of the rule ni in the bitvector for the value ki,j to 1, otherwise we set the
corresponding bit to 0. Repeating these steps for each field ki ∈ K will allow to
construct the final value-bitvector pairs to be used in the classification pipeline.

The final step for this phase is to insert the generated values in their eBPF
maps. Each matching field has a default map; however, bpf-iptables is also able

6There is a transition window between the reception of the netlink notification and the load of
the redirect program, during which the firewall is not yet active. As far as the eBPF is concerned,
this transition cannot be totally removed.

84

5 – Accelerating Linux Security with eBPF iptables

to choose the map type at runtime, based on the current ruleset values. For exam-
ple, a LPM_TRIE is used as default map for IP addresses, which is the ideal choice
when a range of IP addresses is used; however, if the current ruleset contains only
rules with fixed (/32) IP addresses, it changes the map into a HASH_TABLE, mak-
ing the matching more efficient. Before instantiating the pipeline, bpf-iptables
modifies the behavior of every single module by regenerating and recompiling the
eBPF program that best represents the current ruleset. When the most appropriate
map for a given field has been chosen, bpf-iptables fills it with computed value-
bitvector pairs. The combination of eBPF map and field type affects the way in
which bpf-iptables represents the wildcard rule. For maps such as the LPM_TRIE,
used to match IP addresses, the wildcard can be represented as the value 0.0.0.0/0,
which is inserted as any other value. On the other hand, for L4 source and desti-
nation ports, which use a HASH_MAP, bpf-iptables instantiates the wildcard value
as a variable hard-coded in the eBPF program; when the match in the table fails,
it will use the wildcard variable as it was directly retrieved from the map.

Bpf-iptables adopts a variant of the previous algorithm for fields that have a
limited number of possible values, where instead of generating the set θi of distinct
values for the field ki, it produces all possible combinations for that value. The
advantage is that (i) it does not need to generate a separate bitvector for the
wildcard, being all possible combinations already contained within the map and
(ii) can be implemented with an eBPF ARRAY_MAP, which is faster compared to
other maps. An example is the processing of TCP flags; since the number of all
possible values for this field is limited (i.e., 28), it is more efficient to expand the
entire field with all possible cases instead of computing exactly the values in use.

5.6 Evaluation

5.6.1 Test environment
Setup. Our testbed includes a first server used as DUT running the firewall un-
der test and a second used as packet generator (and possibly receiver). The DUT
encompasses an Intel Xeon Gold 5120 14-cores CPU @2.20GHz (hyper-threading
disabled) with support for Intel’s Data Direct I/O (DDIO) [84], 19.25 MB of L3
cache and two 32GB RAM modules. The packet generator is equipped with an In-
tel® Xeon CPU E3-1245 v5 4-cores CPU @3.50GHz (8 cores with hyper-threading),
8MB of L3 cache and two 16GB RAM modules. Both servers run Ubuntu 18.04.1
LTS, with the packet generator using kernel 4.15.0-36 and the DUT running kernel
4.19.0. Each server has a dual-port Intel XL710 40Gbps NIC, each port directly
connected to the corresponding one of the other server.

85

5 – Accelerating Linux Security with eBPF iptables

Evaluation metrics. Our tests analyze both TCP and UDP throughput of
bpf-iptables compared to existing (and commonly used) Linux tools, namely
iptables and nftables. TCP tests evaluate the throughput of the system under
“real” conditions, with all the offloading features commonly enabled in production
environments (i.e., IP fragmentation, TCP segmentation offloading, checksum of-
floading). Instead, UDP tests stress the capability of the system in terms of packet
per seconds, hence we use 64B packets without any offloading capability. When
testing bpf-iptables, we disabled all the kernel modules related to iptables and
nftables (e.g., x_tables, nf_tables) and the corresponding connection tracking
modules (i.e., nf_conntrack and nft_ct). Although most of the evaluation metrics
are common among all tests, we provide additional details on how the evaluation
has been performed on each test separately.

Testing tools. UDP tests used Pktgen-DPDK v3.5.6 [55] and DPDK v18.08 to gen-
erate traffic, while for TCP tests we used both iperf v2.0.10 to measure the TCP
throughput and weighttp [10] v0.4 to generate a high number of new parallel
HTTP connection towards the DUT, counting only the successful completed con-
nections [91]. Particularly, the latter reports the actual capability of the server to
perform real work.

Rulesets and Packet-traces. We used the same ruleset for all the firewalls un-
der consideration. In particular, nftables rules have been generated using the
same rules loaded for bpf-iptables and iptables but converted using iptables-
translate [11]. Since synthetic rulesets vary depending on the test under consider-
ation, we describe their content in the corresponding test’s section. Regarding the
generated traffic, we configured Pktgen-DPDK to generate traffic that matches the
configured rules; also in this case we discuss the details in each test description.

5.6.2 System benchmarking
This Section evaluates the performance and efficiency of individual bpf-iptables

components (e.g., conntrack, matching pipeline).

5.6.2.1 Performance dependency on the number of rules

This test evaluates the performance of bpf-iptables with an increasing num-
ber of rules, from 50 to 5k. We generated five synthetic rulesets with rules matching
the TCP/IP 5-tuple and then analyzed a first scenario in which rules are loaded
on the FORWARD chain (Section 5.6.2.2) and a second that involves the INPUT chain
(Section 5.6.2.3). In the first case, performance are influenced by both the classi-
fication algorithm and the TCP/IP stack bypass; in the second case packets are

86

5 – Accelerating Linux Security with eBPF iptables

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 500 1000 5000

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

of rules

bpf-iptables iptables nftables

(a)

 0

 2

 4

 6

 8

 10

 12

50 100 500 1000 5000

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

of rules

bpf-iptables iptables nftables

(b)

Figure 5.6: Single 5.6a and multi-core 5.6b comparison when increasing the number
of loaded rules. Generated traffic (64B UDP packets) is uniformly distributed
among all the rules.

delivered to a local application, hence the performance are mainly influenced by
the classification algorithm.

5.6.2.2 Performance dependency on the number of rules (FORWARD chain)

This test loads all the rules in the FORWARD chain and the DUT is configured as
router in order to forward all traffic received from one interface to the other. The
generated traffic is uniformly distributed among all the rules7, without any packet
hitting the default rule. Since each rule is a 5-tuple, the number of TCP generated
flows is equal to the number of rules.

Evaluation metrics. We report the UDP throughput (in Mpps) averaged among
10 different runs. This value is taken by adjusting the sending rate not to exceed
1% packet loss. Single-core results are taken by setting the interrupts mask of each
ingress receive queue to a single core, while multi-core performance (14 cores in
our case) represent the standard case where all the available cores in the DUT are
used.

Results. Figure 5.6a and 5.6b show respectively the single-core and multi-core
forwarding performance results. We can notice from Figure 5.6a how bpf-iptables
outperforms iptables by a factor of two even with a small number of rules (i.e.,

7We used a customized version of Pktgen-DPDK [110] to randomly generate packet for a given
range of IPv4 addresses and L4 port values.

87

5 – Accelerating Linux Security with eBPF iptables

 0

 2

 4

 6

 8

 10

50 100 500 1000 5000T
h

ro
u

g
h

p
u

t
(G

b
p

s)

of rules

bpf-iptables iptables nftables

Figure 5.7: Performance of the INPUT chain with an increasing number of rules.
bpf-iptables runs on a single CPU core and iperf on another core.

50); this gap is even larger with nftables, which is almost 5 times slower in the
same conditions. The advantage of bpf-iptables is even more evident with more
rules; the main performance bottleneck is the scanning of the entire bitvector in
order to find the final matching rule, whose size depends on the number of rules
(Section 5.4.4). Finally, Figure 5.6b shows how bpf-iptables scale across multiple
cores; the maximum throughput is achieved with 1K rules since the number of
generated flows with a smaller number of rules is not enough to guarantee uniform
processing across multiple cores (due to the RSS/RFS feature of the NIC), with a
resulting lower throughput.

5.6.2.3 Performance dependency on the number of rules (INPUT chain)

This test loads all the rules in the INPUT chain; traffic traverses the firewall
and terminates on a local application, hence following the same path through the
TCP/IP stack for all the firewalls under testing. As consequence, any performance
difference is mainly due to the different classification algorithms. We used iperf
to generate UDP traffic (using its default packet size for UDP) toward the DUT,
where the default accept policy causes all packet to be delivered to the local iperf
server, where we compute the final throughput. To further stress the firewall, we
used eight parallel iperf clients to generate the traffic, saturating the 40Gbps link.

Evaluation metrics. We report the UDP throughput (in Gbps) among 10 differ-
ent runs; we forced the firewall to run on a single core, while the iperf server runs
on a different core.8

8We set the affinity of iperf on a single core and then we forced all interrupts on another one.

88

5 – Accelerating Linux Security with eBPF iptables

 0
 2
 4
 6
 8

 10
 12
 14

IPSrc +IPDst +L4Proto +L4SrcPort +L4DstPortT
h

ro
u

g
h

p
u

t
(M

p
p

s)

Rules fields

bpf-iptables iptables nftables

Figure 5.8: Multi-core performance comparison when varying the number of fields in
the rulesets. Generated traffic (64B UDP packets) is uniformly distributed among
all the rules.

Results. Figure 5.7 shows how bpf-iptables perform better than the other
firewalls, with an increasing gap with larger rulesets. However, the advantage with
a low number of rules is smaller compared to the previous case; in fact, in this
scenarios, bpf-iptables cannot avoid the cost of passing through the TCP/IP
stack (and the allocation of the sk_buff). Therefore its performance advantage is
given only by the different classification algorithm, which is more evident when the
number of rules grows. However, it is important to note that in case of DROP rules,
bpf-iptables discards the packets far before they reach the local application, with
a sensible performance advantage thanks to the early processing of XDP.

5.6.2.4 Performance dependency on the number of matching fields

Since the bpf-iptables modular pipeline requires a separate eBPF program
(hence an additional processing penalty) for each matching field, this test evaluates
the throughput of bpf-iptables when increasing the number of matching fields in
the deployed rules in order to characterize the (possible) performance degradation
when operating on a growing number of protocol fields.

Ruleset. We generated five different rulesets with a fixed number of rules (i.e.,
1000) and with an increasing complexity that goes from matching only the srcIP
address to the entire 5-tuple. All the rules have been loaded in the FORWARD chain
and have the ACCEPT action, while the default action of the chain is DROP.

Test setup and evaluation metrics. Same as Section 5.6.2.2.

89

5 – Accelerating Linux Security with eBPF iptables

 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 200 400 600 800 1000

kr

eq
/s

clients

iptables
nftables
bpf-iptables

(a) NIC interrupts set to a single core;
nginx running on the remaining ones.

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 200 400 600 800 1000

kr

eq
/s

clients

iptables
nftables

bpf-iptables

(b) NIC interrupts are set to all the cores;
nginx running without any restrictions.

Figure 5.9: Connection tracking with an increasing number of clients (number of
successfully completed requests/s).

Results. Results in Figure 5.8 show that iptables performs almost the same
independently on the complexity of the rules; this is expected given that is cost
is dominated by the number of rules. Results for bpf-iptables are less obvious.
While, in the general case, increasing the number of fields corresponds to a decrease
in performance (e.g., rules operating on the 5-tuple show the lowest throughput),
this is not always true, with the first four columns showing roughly the same value
and the peak observed when operating on two fields. In fact, the performance of
bpf-iptables are influenced also by the type of field and number of values for each
field. For instance, the matching against IP addresses requires, in the general case,
a longest prefix match algorithm; as consequence, bpf-iptables uses an LPM_TRIE,
whose performance depend on the number of distinct values. In this case, a single
matching on a bigger LPM_TRIE results more expensive than two matches on two
far smaller LPM_TRIE, which is the case when rules operate on both IP source
and destination addresses9.

5.6.2.5 Connection Tracking Performance

This test evaluates the performance of the connection tracking module, which
enables stateful filtering. We used HTTP traffic to stress the rather complex state
machine of that protocol (Section 5.4.5) by generating a high number of new con-
nections per second, taking the number of successfully completed sessions as per-
formance indicator.

9First ruleset had 1000 rules, all operating on source IP addresses. Second ruleset used #50
distinct srcIPs and #20 distinct dstIPs, resulting again in 1000 rules.

90

5 – Accelerating Linux Security with eBPF iptables

Test setup. In this test weighttp [10] generated 1M HTTP requests towards
the DUT, using an increasing number of concurrent clients to stress the connection
tracking module. At each request, a file of 100 byte is returned by the nginx web
server running in the DUT. Once the request is completed, the current connection
is closed and a new connection is created. This required to increase the limit
of 1024 open file descriptors per process imposed by Linux in order to allow the
sender to generate a larger number of new requests per second and to enable the
net.ipv4.tcp_tw_reuse flag to reuse sessions in TIME_WAIT state in both sender
and receiver machines10.

Ruleset. This ruleset is made by three rules loaded in the INPUT chain, hence
operating only on packets directed to a local application. The first rule accepts all
packets belonging to an ESTABLISHED session; the second rule accepts all the NEW
packets coming from the outside and with the TCP destination port equal to 80;
the last rule drops all the other packets coming from outside.

Evaluation metrics. We measure the number of successfully completed requests;
in particular, weighttp increments the above number only if a request is completed
within 5 seconds.

Results. bpf-iptables scores better in both single-core and multi-core tests,
with iptables performing from 5 to 3% less and nftables being down from 7
to 10%, as shown in Figures 5.9a and 5.9b. However, for the sake of precision,
the connection tracking module of bpf-iptables does not include all the features
supported by iptables and nftables (Section 5.4.5). Nevertheless, we remind
that this logic can be customized at run-time to fit the necessity of the particular
running application, including only the required features, without having to update
the Linux kernel.

5.6.3 Realistic Scenarios
In this set of tests we analyzed some scenarios that are common in enterprise

environments, such as (i) protecting servers in a DMZ, and (ii) performance under
DDoS attack.

5.6.3.1 Enterprise public servers

This test mimics the configuration of an enterprise firewall used as front-end
device, which controls the traffic directed to a protected network (e.g., DMZ) that

10We also tuned some parameters (e.g., max backlog, local port range) in order to reduce the
overhead of the web server.

91

5 – Accelerating Linux Security with eBPF iptables

 0
 2
 4
 6
 8

 10
 12

50 100 500 1000 5000

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

of rules

bpf-iptables iptables nftables

Figure 5.10: Throughput when protecting a variable number of services within a
DMZ. Multi-core tests with UDP 64B packets, bidirectional flows.

hosts a set of servers that must be reachable from the outside world. We increase
the number of public servers that needs to be protected, hence tests were repeated
with different number of rules.

Ruleset. The first rule accepts all the ESTABLISHED connections towards the pro-
tected network; then, a set of rules accept NEW connections generated by the servers
in the protected network towards the outside world; the latest set of rules enable the
communication towards the services exposed in the protected network by matching
on the destination IP, protocol and L4 port destination of the incoming packets.
Among the different runs we used an increasing number of rules ranging from 50
to 5K, depending on the number of public services that are exposed to the outside
world.

Test setup. All the rules are loaded in the FORWARD chain and the traffic is
generated so that the 90% is evenly distributed among all the rules and the 10%
matches the default DROP rule. The packet generator is connected to the DUT
through two interfaces, simulating a scenario where the firewall is between the two
(public and protected) networks. When traffic belonging to a specific flow is seen
in both directions, the session is considered ESTABLISHED and then will match the
first rule of the ruleset.

Evaluation metrics. The test has been repeated 10 times; results report the
throughput in Mpps (for 64B UDP packets).

92

5 – Accelerating Linux Security with eBPF iptables

 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0 5 10 15 20 25 30 35 40

H
T

T
P

 r
eq

/s

DDoS Traffic (Mpps)

bpf-iptables
iptables
nftables

ipset
nft-set

Figure 5.11: Multi-core performance under DDoS attack. Number of successful
HTTP requests/s under different load rates.

Results. bpf-iptables outperforms existing solutions thanks to the optimized
path for the FORWARD chain, which transparently avoids the overhead of the Linux
TCP/IP stack, as shown in Figure 5.10. In addition, its throughput is almost in-
dependent from the number of rules thanks to the optimization on the ESTABLISHED
connections (Section 5.4.4.2), which avoids the overhead of the classification pipeline
if the conntrack module recognizes an ESTABLISHED connection that should be ac-
cepted. Even if iptables would also benefit from the fact that most packets match
the first rule, hence making the linear search faster, the overall performance in
Figure 5.10 show a decrease in throughput when the number of rules in the ruleset
grows. This is primarily due to the overhead to recognize the traffic matching the
default rule (DROP in our scenario), which still requires to scan (linearly) the entire
ruleset.

5.6.3.2 Performance under DDoS Attack

This tests evaluates the performance of the system under DDoS attack. We an-
alyzed also two optimized configurations of iptables and nftables that make use
of ipset and sets commands, which ensures better performance when matching
an entry against a set of values.

Ruleset. We used a fixed set of rules (i.e., 1000) matching on IP source, protocol
and L4 source port, DROP action. Two additional rules involve the connection track-
ing to guarantee the reachability of internal servers; (i) accepts all the ESTABLISHED
connections and (ii) accepts all the NEW connection with destination L4 port 80.

93

5 – Accelerating Linux Security with eBPF iptables

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

FORWARD Chain

U
D

P
 T

h
ro

u
g

h
p

u
t

(M
p

p
s)

INPUT Chain
 0

 1000

 2000

 3000

 4000

 5000

 6000

H
T

T
P

 r
eq

/s

bpf-iptablesiptablesnftables

Figure 5.12: Performance with single default ACCEPT rule (baseline). Left: UDP
traffic, 64B packets matching the FORWARD chain. Right: number of HTTP request-
s/s (downloading a 1MB web page), TCP packets matching the INPUT chain.

Test setup and evaluation metrics. The packet generator sends 64Bytes UDP
packets towards the server with the same set of source IP addresses and L4 ports
configured in the blacklisted rules. DDoS traffic is sent on a first port connected
to the DUT, while a weighttp client sends traffic on a second port, simulating a
legitimate traffic towards a nginx server running in the DUT. Weighttp generates
1M HTTP requests using 1000 concurrent clients; we report the number of success-
fully completed requests/s, with a timeout of 5 seconds, varying the rate of DDoS
traffic.

Results. Figure 5.11 shows that the performance of bpf-iptables, ipset and
nft-set are similar for of low-volume DDoS attacks; iptables and nftables
are slightly worse because of their inferior matching algorithm. However, with
higher DDoS load (> 8Mpps), the performance of ipset and nft-set drop rapidly
and the server becomes unresponsive, with almost no requests served; iptables
and nftables are even worse (zero goodput at 2.5Mpps). Vice versa, thanks to
its matching pipeline at the XDP level, bpf-iptables can successfully sustain
~95.000 HTTP requests/s of legitimate traffic when the DDoS attack rate is more
than 40Mpps, i.e., ~60% of the maximum achievable load. Higher DDoS load was
not tested because of a limitation of our traffic generator.

94

5 – Accelerating Linux Security with eBPF iptables

5.6.4 Microbenchmarks
5.6.4.1 Baseline performance

This test analyzes the overhead of bpf-iptables on a vanilla system, without
any firewall rule. This represents the most favorable case for iptables where cost
grows linearly with the number of rules, while bpf-iptables has to pay the cost of
some programs at the beginning of the pipeline that must be always active, such as
the connection tracking and the logic that applies the default action to all packets
(i.e., ALLOW). The left side of Figure 5.12 shows the performance of bpf-iptables,
iptables and nftables when the traffic (64B UDP packets) traverses the FORWARD
chain. This case shows a considerable advantage of bpf-iptables thanks to its
optimized forwarding mechanism (Section 5.4.4.2). The situation is slightly dif-
ferent when the traffic hits the INPUT chain (Figure 5.12, right). In fact, in such
case the packets has to follow the usual path towards the stack before reaching the
local application, with no chance to shorten its journey. While bpf-iptables does
not show the advantages seen in the previous case, it does not show any worsen-
ing either, hence demonstrating that the overhead of the running components is
definitely limited.

5.6.4.2 Rules insertion time

The LBVS matching algorithm requires the update of the entire pipeline each
time the ruleset changes (Section 5.4.4.3). This test evaluates the time required
to insert the (n + 1)th rule when the ruleset already contains n rules; in case of
iptables and nft, this has been measured by computing the time required to
execute the corresponding userspace tool. Results, presented in Table 5.1, show
that both iptables and nftables are very fast in this operation, which completes
in some tens of milliseconds; bpf-iptables, instead, requires a far larger time
(varying from 1 to 2.5s with larger rulesets). To understand the reason of this
higher cost, we exploded the bpf-iptables rules insertion time in three different
parts. Hence, t1 indicates the time required by the bpf-iptables control plane to
compute all the value-bitvector pairs for the current ruleset. Instead, t2 indicates
the time required to compile and inject the new eBPF classification pipeline in the
kernel; during this time, bpf-iptables continues to process the traffic according to
the old ruleset, with the swapping performed only when the new pipeline is ready11.
Finally, t3 is the time required to delete the old chain, which has no impact on
the user experience as the new pipeline is already filtering traffic after t2. Finally,

11Since time t2 depends on the number of matching fields required by each rule (bpf-iptables
instantiates the minimum set of eBPF programs necessary to handle the current configuration),
numbers in Table 5.1 take into account the worst case where all the rules require matching on all
the supported fields.

95

5 – Accelerating Linux Security with eBPF iptables

Table 5.1: Comparison of the time required to append the (n + 1)th in the ruleset
in milliseconds (ms).

rules iptables nftables
bpf-iptables HORUS

t11 t22 t33 tH14 tH25

0 15 31 0.15 1165 0.34 382 0.0024

50 15 34 2.53 1560 0.36 1.08 0.0026

100 15 35 5.8 1925 0.35 2.06 0.0026

500 16 36 17 1902 0.34 8.60 0.0027

1000 17 69 33.4 1942 0.34 14.4 0.0027

5000 28 75 135 2462 0.38 37.3 0.0031
1 Time required to compute all the bitvectors-pairs.
2 Time required to create and load the new chain.
3 Time required to remove the old chain.
4 Time required to identify the rules belonging to a HORUS set.
5 Time required to insert the new rule in the HORUS set.

the last column of Table 5.1 depicts the time required to insert a rule handled by
HORUS (Section 5.4.4.2). Excluding the first entry of this set that requires to load
the HORUS eBPF program, all the other entries are inserted in the HORUS set within
an almost negligible amount of time (tH2). Instead, the detection if the new rule
belongs to an HORUS set takes more time (tH1 ranges from 1 to 40ms), but this can
be definitely reduced with a more optimized algorithm.

5.6.4.3 Ingress pipeline: XDP vs. TC

bpf-iptables attaches its ingress pipeline on the XDP hook, which enables traf-
fic processing as early as possible in the Linux networking stack. This is particularly
convenient when the packet matches the DROP action or when we can bypass the
TCP/IP stack and forward immediately the packet to the final destination (opti-
mized forwarding, Section 5.4.4.2). However, when an eBPF program is attached
to the XDP hook, the Generic Receive Offload12 feature on that interface is disabled;
as a consequence, we may incur in higher processing costs in presence of large TCP
incoming flows. Results in Figure 5.13, which refer to a set of parallel TCP flows

12Generic Receive Offload (GRO) is a software-based offloading technique that reduces the
per-packet processing overhead by reassembling small packets into larger ones.

96

5 – Accelerating Linux Security with eBPF iptables

 0

 5

 10

 15

 20

 25

 30

 35

 40

bpf-iptablesT
C

P
 T

h
ro

u
g

h
p

u
t

(G
b

p
s)

XDP INGRESS
TC INGRESS

Figure 5.13: TCP throughput when the bpf-iptables ingress pipeline (with zero
rules) is executed on either XDP or TC ingress hook; bpf-iptables running on a
single CPU core; iperf running on all the other cores.

between the traffic generator and the DUT, with a void INPUT chain and the de-
fault ACCEPT action, show clearly how the XDP ingress pipeline pays a higher cost
compared to TC, which easily saturates our 40Gbps link13. This higher cost is given
by the larger number of (small) packets to be processed by bpf-iptables because
of the lack of GRO aggregation; it is important to note that this cost is not present
if TCP data exits from the server (outgoing traffic), which is a far more common
scenario.

5.7 Additional Discussion
Although one of the main assumption of our work was to rely on a vanilla Linux

kernel (Section 5.2.4), as a possible future work we present here a set of viable kernel
modifications that are compatible with bpf-iptables and that may enable new
optimizations.

New kernel hooks. Being based on eBPF, bpf-iptables uses a different set
of hooks compared to the ones used by the netfilter subsystem (Section 5.2.1).
This introduces the need to predict, in a preceding eBPF hook, some decisions
that would be performed only later in the Linux stack. A possible alternative
consists in adding new eBPF hooks that operate in netfilter, hence enabling
the replacement of selected portions of the above framework that suffer more in
terms of performance (e.g., iptables classification pipeline), while reusing existing

13To avoid TCP and application-level processing to become the bottleneck, we set all the NIC
interrupts to a single CPU core, on which bpf-iptables has to be executed, while iperf uses all
the remaining ones.

97

5 – Accelerating Linux Security with eBPF iptables

and well-tested code (e.g., netfilter conntrack). Although this would be the
most suitable choice for a 100% iptables-compatible eBPF-based firewall, on the
other side it would unavoidably limit the overall performance of the system. In
fact, this would set the baseline performance of bpf-iptables to the one of the
corresponding TCP/IP stack layer, because of the large amount of code shared
between the two approaches and the impossibility to leverage earlier processing
provided by the XDP hook. Moreover, the early packet steering provided by XDP
enables also the creation of the exact processing pipeline that is required in any
given moment in time, instantiating only the proper eBPF modules. This would
avoid any source of overhead in the processing path of a packet, which would not
be possible in case existing kernel network stack components are used.

New eBPF helpers. Adding new eBPF helpers is definitely a suitable direction,
in particular with respect to our eBPF conntrack (Section 5.4.5) that is far from
complete and supports only basic scenarios. A dedicated helper would enable a
more complete implementation without having to deal with the well-known limi-
tations of eBPF programs (e.g., number of instructions, loops). A similar helper
that reused the netfilter connection tracking was proposed in [158], which was at
the foundation of an alternative version of bpf-iptables [111]. However, based on
the above prototype, we would suggest a custom implementation of the conntrack
module in order to be independent from the network stack; the above implementa-
tion assumed the use of sk_buff structure and hence was available only to eBPF
programs attached to the TC hook.

Improve eBPF internals. One of the biggest limitation of the eBPF subsystem
that we faced in this work is the maximum number of allowed instructions, cur-
rently constrained to 4K, which limited the maximum number of supported rules
to ~8K (Section 5.4.4, without HORUS). In this respect, the extension of the eBPF
verifier (available for kernel v5.3+) to support bounded loops would be extremely
helpful [136]. At the same way, a recent patch [150] that introduced the support
for larger eBPF programs up to one million14 increases the number of supported
rules without any change in the overall design of the system.

5.8 Conclusions
This Chapter presents bpf-iptables, an eBPF-based Linux firewall designed

to preserve the iptables filtering semantic while improving its speed and scala-
bility, in particular when a high number of rules are used. Being based on eBPF,

14This value indicates the number of instructions processed by the verifier.

98

5 – Accelerating Linux Security with eBPF iptables

bpf-iptables is able to take advantage of the characteristics of this technology,
such as the dynamic compilation and injection of the eBPF programs in the kernel
at run-time in order to build an optimized data-path based on the actual firewall
configuration. The tight integration of bpf-iptables with the Linux kernel may
represent a great advantage over other solutions (e.g., DPDK) because of the pos-
sibility to cooperate with the rest of the kernel functions (e.g., routing) and the
other tools of the Linux ecosystem. Furthermore, bpf-iptables does not require
custom kernel modules or additional software frameworks that could not be allowed
in some scenarios such as public data-centers.

Bpf-iptables guarantees a huge performance advantage compared to existing
solutions, particularly in case of an high number (i.e., up to 32K in the current
prototype) of filtering rules; furthermore, it does not introduce undue overheads in
the system when no rules are instantiated, even though in some cases the use of
XDP on the ingress hook could hurt the overall performance of the system. Existing
eBPF limitations have been circumvented with ad-hoc engineering choices (e.g.,
classification pipeline) and clever optimizations (e.g., HORUS), which guarantee
further scalability and fast update time.

On the other hand, currently bpf-iptables supports only a subset of the fea-
tures available in netfilter-based firewalls. For instance, iptables is often used
to also handle natting functions, which we have not considered in this Chapter,
as well as the features available in ebtables and arptables. Those functionality,
together with the support for additional matching fields are considered as possible
direction for our future work.

99

Chapter 6

Introducing SmartNICs in
Server-based Data Plane
Processing: the DDoS Mitigation
Use Case

6.1 Introduction
With the objective of further reducing the workload on the precious general-

purpose CPU cores of the servers, system administrators have recently resumed
the old idea of introducing programmable intelligent networking adapters (a.k.a.,
SmartNICs) in their servers [156, 103, 64, 41], combining the flexibility of software
network functions with the improved performance of the hardware NIC accelera-
tion. Smart Network Interface Cards (SmartNIC) offer hardware accelerators that
enable to partially (or fully) offload packet processing functions; examples include
load balancing [116], key-value stores [145] or more generic flow-level network func-
tions [128, 118]. On the other hand, SmartNICs may present additional challenges
due to their limited memory and computation capabilities compared to current
high-performance servers.

In this Chapter we explored the potential of exploiting SmartNICs on a specific
use case, i.e., to mitigate volumetric DDoS attacks, which are considered as one
of the major threats in today’s Internet, accounting for the 75.7% of the total
DDoS attacks [5, 149, 4]. While the detection of DDoS attacks is a largely studied
problem in the literature with several algorithms proposed to rapidly and efficiently
detect an ongoing attack, in this Chapter we focus on the challenges related to the
DDoS attack mitigation; in particular, we explore how the recent advances on the
host data-plane acceleration can be used to adequately handle the large speeds
required by today’s networks. This work results particularly beneficial also for the

100

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

application showed in Chapter ??, where the bpf-iptables classification pipeline
can be enhanced and improved with the hardware filtering mechanism available in
the SmartNIC.

We provide the following contributions. First, we analyze the various approaches
that can be used to design an efficient and cost-effective DDoS mitigation solu-
tion. As generally expected, our results show that offloading the mitigation task
to the programmable NIC yields significant performance improvements; however,
we demonstrate also that, due to the memory and compute limitations of current
SmartNIC technologies, a fully offloaded solution may lead to deleterious perfor-
mance. Second, as a consequence of the previous findings, we propose the design
and implementation of a hybrid mitigation pipeline architecture that leverages the
flexibility of eBPF/eXpress Data Path (XDP) to handle different type of traffic
and attackers and the efficiency of the hardware-based filtering in the SmartNIC
to discard traffic from malicious sources. Third, we present a mechanism to trans-
parently offload part of the DDoS mitigation rules into the SmartNIC, which takes
into account the most aggressive sources, i.e., the ones that largely impact on the
mitigation effectiveness.

The rest of the Chapter is structured as follows. Section 6.2 presents a high-level
overview of the SmartNIC and TC Flower, the flow classifier of the Linux traffic
control kernel subsystem. Section 6.3 analyzes the different approaches that can be
used to build an efficient DDoS mitigation solution. Section 6.4 presents the design
of an architecture that uses the above mentioned technologies to both detect and
mitigate DDoS attacks, including the offloading algorithm adopted to install the
rules into the SmartNIC (Section 6.4.1.1), while keeping the flexibility and improved
performance of the in-kernel XDP packet processing. Finally, Section 6.5 provides
the necessary evidence to the previous findings, Section 6.6 briefly discusses the
related works and Section 6.7 concludes the Chapter.

6.2 Background

6.2.1 SmartNICs
Smart Network Interface Cards (SmartNICs) are intelligent adapters used to

boost the performance of servers by offloading (part of) the network processing
workload from the host CPU to the NIC itself [154]. Although the term SmartNIC
is being widely used in the industry and academic world, there is still some con-
fusion over the precise definition. We consider traditional NICs the devices that
provide several pre-defined offloaded functions (e.g., transmit/receive segmentation
offload, checksum offload) without including a fully programmable processing path,
e.g., which may involve the presence of a general-purpose CPU on board. In our
context, a SmartNIC is a NIC equipped with a fully-programmable system-on-chip

101

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

(SoC) multi-core processor that is capable to run a fully-fledged operating system,
offering more flexibility and hence potentially taking care of any arbitrary network
processing task. This type of SmartNIC can also be enhanced with a set of spe-
cialized hardware functionalities that can be used to accelerate specific class of
functions (e.g., OpenvSwitch data-plane) or to perform generic packet and flow-
filtering. On the other hand, they have limited compute and memory capabilities,
making not always possible (or efficient) to completely offload all types of tasks.
Furthermore, SmartNICs feature their own operating system and therefore may
have to be handled separately from the host. For instance, offloading a network
task to the SmartNIC may require the host to have multiple interactions with the
card, such as to compile and inject the new eBPF code, to execute additional com-
mands (either on the host, or directly on the card) to exploit the available features
such as configure hardware co-processors. Finally, no current standard exist to
interact with SmartNICs, hence different (and often proprierary) methods have to
be implemented when the support of several manufacturers is required.

6.2.2 TC Flower
The Flow Classifier is a feature of the Linux Traffic Control (TC) kernel subsys-

tem that provides the possibility to match, modify and apply different actions to a
packet based on the flow it belongs to. It offers a common interface for hardware
vendors to implement an offloading logic within their devices; when a TC Flower
rule is added, active NIC drivers check if that rule is supported in hardware; in that
case the rule is pushed to the physical card, causing packets to be directly matched
in the hardware device [77], hence resulting in greater throughput and a decrease
of the host CPU usage. TC Flower represents a promising technology that can hide
the differences between different hardware manufacturers, but it not able (yet) to
support all the high-level features that may be available in modern SmartNICs.

6.3 DDoS Mitigation: Approaches
Once a DDoS attack is detected, efficient packet dropping is a fundamental part

of a DDoS attack mitigation solution. In a typical DDoS mitigation pipeline, a set of
mitigation rules are deployed in the server’s data plane to filter the malicious traffic.
The strategy used to block the malicious sources may be determined by several
factors such as the characteristics of the server (e.g., availability of a SmartNIC,
its hardware capabilities), the characteristics of the malicious traffic (e.g., number
of attackers) or the type and complexity of the rules that are used to classify the
illegitimate traffic. In particular, we envision the following three approaches.

102

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

6.3.0.1 Host-based mitigation

In this case all traffic (either malicious or legitimate) is processed by the host
CPU, which drops incoming packets that match a given blacklist of malicious
sources; this represents the only viable option if the system lacks of any underly-
ing hardware accelerators/offloading functionalities. All the host-based mitigation
techniques and tools used today fall in two different macro-categories depending on
whether packets are processed at kernel or user-space level.

Focusing on Linux-based system, the first category includes iptables and its
derivatives, such as nftables, which represent the main tools used to mitigate
DDoS attacks. It allows to express complex policies to the traffic, filtering pack-
ets inside the netfilter subsystem. However, the deep level in the networking
stack where the packet processing occurs causes poor performance when coping
with increasing speed of the today’s DDoS attacks, making this solution practically
unfeasible, as demonstrated in Section 6.5. As opposite to kernel-level processing,
a multitude of fast packet I/O frameworks relying on specialized NIC/networking
drivers and user-space processing have been built over the past years. Examples
such as Netmap [133], DPDK [54], PF_RING ZC [121] rely on a small kernel com-
ponent that maps the NIC device memory directly to user space, hence making it
directly available to (network-specialized) userland applications instead of relying
on normal kernel data-path processing. This approach provides huge performance
benefits compared to the standard kernel packet processing but incurs in several
non-negligible drawbacks. First of all, these frameworks require to take the ex-
clusive ownership of the NIC, so that all packets received are processed by the
userspace application. This means that, in a DDoS mitigation scenario, packets
belonging to legitimate sources have to be inserted back into the kernel, causing
unnecessary packet copies that slow down the performance1. Furthermore, these
frameworks require the fixed allocation of one (or more) CPU cores to the above
programs, independently from the presence of an ongoing attack, hence reducing
the performance-cost ratio, as precious CPU resources are no longer available for
normal processing tasks (e.g., virtual machines).

eBPF/XDP can be considered as a mix of the previous approaches. It is tech-
nically a kernel-space framework, although XDP programs can be injected from
userspace to the kernel, after guaranteeing that all security properties are satisfied.
XDP programs are executed in the kernel context but as early as possible, well
before the netfilter framework, hence providing an improvement of an order of
magnitude compared to iptables. The adoption of XDP to implement packet fil-
tering functionalities has grown over the years; (i) its perfect integration with the

1It is worth mentioning that Netmap has a better kernel integration compared to DPDK; in
fact, it is possible to inject packets back into the kernel by just passing a pointer, without any
copy. However, it is still subjected to a high CPU consumption compared to eBPF/XDP.

103

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

Linux kernel makes it more efficient to pass legitimate packets up to the stack, (ii)
its simple programming model makes it easy to express customized filtering rules
without taking care of low-level details such as required by common user-space
framework and (iii) its event-driven execution gives the possibility to consume re-
sources only when necessary, providing a perfect trade-off between performance and
CPU consumption.

6.3.0.2 SmartNIC-based mitigation

If the server is equipped with a SmartNIC, an alternative approach would be
to offload the entire mitigation task to this device. This enables to dedicate all
the available resources on the host CPU to the target workloads, operating only
on the legitimate traffic, freeing the host CPU from spending precious CPU cycles
in the mitigation. However, although SmartNICs (by definition) support arbitrary
data path processing, they often differ on how this can be achieved. Possible
options range from running a custom executable, which should already be present
on the card, to dynamically inject a new program created on the fly, e.g., thanks
to technologies such as XDP or P4, or to directly compile those programs into
the hardware device [34]. This makes more cumbersome the implementation of
offloading features that run on cards from multiple manufacturers.

In our context, we envision two different options: (i) exploit any hardware filter
(if available) in the SmartNIC and, if the number of blacklisted addresses exceeds
the capability of the hardware (which may be likely, given the typical size of the
above structure), block the rest of the traffic with a custom dropping program (e.g.,
XDP) running on the NIC CPU; (ii) block all the packets in software, running
entirely on the SmartNIC CPU, e.g., in case the card does not have any hardware
filtering capability. In both cases, the surviving (benign) traffic is redirected to the
host where the rest of server applications are running. An evaluation of the above
possibilities will be carried out in Section 6.5.

6.3.0.3 Hybrid (SmartNIC + XDP Host)

An alternative strategy that combines the advantages of the previous approaches
would be to adopt a hybrid solution where part of the malicious traffic is dropped by
the SmartNIC (reducing the overhead on the host’s CPU) and the remaining part
is handled on the host, possibly leveraging the much greater processing power avail-
able in modern server CPUs compared to the one available in embedded devices.

In this scenario, we exploit the fixed hardware functions commonly available in
the current SmartNICs to perform stateless matching on selected packet fields and
apply simple actions such as modify, drop or allow packets. To avoid redirecting all
the traffic to the (less powerful) SmartNIC CPU, we could let it pass through the

104

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

above hardware tables (where the match/drop is performed at line rate) and for-
ward the rest of the packets to the host, where the remaining part of the mitigation
pipeline is running. However, given the limited number of entries often available in
the above hardware tables, which are not enough to contain the large number of mit-
igation rules needed during a large DDoS attack, the whole list of dropping targets
is partitioned between the NIC and the host dropping program (e.g., XDP). This re-
quires specific algorithms to perform this splitting, which should keep into account
the difference in terms of supported rules and their importance. Interesting, this
scenario in which the companion filtering XDP program is executed in the server is
also compatible with some traditional NICs that support fixed hardware traffic fil-
tering, such as Intel cards with Flow Director2. In this case, the mitigation module
can use the card-specific syntax (e.g., Flow Director commands) to configure filter-
ing rules, with the consequent decrease of the filtering processing load in the host.

6.4 Architecture and Implementation
This section presents a possible architecture that can be used to compare the

previous three approaches in the important use case of the DDoS mitigation, en-
abling a fair comparison of their respective strength and weaknesses in the imple-
mentation of an efficient and cost-effective mitigation pipeline. In particular, we
present the different components constituting the proposed architecture (shown in
Figure 6.1) and their role, together we some implementation details that result from
the use of the assessed technologies.

6.4.1 Mitigation
The first program encountered in the pipeline is the filtering module, which

matches the incoming traffic against the list of blacklisted entries to drop packets
coming from malicious sources; surviving packets are redirected to the host where
additional (more advanced) checks can be performed before redirecting packets
directly to the next program in the pipeline (i.e., the feature extraction).

Although our architecture is flexible enough to instantiate the filtering program
in different locations (e.g., SmartNIC, Host, and even partitioned across the two
above), at the beginning we instantiate an XDP filtering program in the host in
order to obtain the necessary traffic information and decide the best mitigation
strategy. If the userspace DDoS mitigation module recognizes the availability of
the hardware offload functionality in the SmartNIC, it starts adding the filtering

2The Flow Director is an Intel feature that supports advanced filters and packet processing in
the NIC; for this reason it is often used in scenarios where packets are small and traffic is heavy
(e.g., DoS attacks).

105

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

USER

KERNEL

DDOS DETECTION / MITIGATION LOGIC
USERSPACE

APPS

eBPF sandbox

XDP PROGRAM

FILTERING

XDP PROGRAM

XDP (SWAP)

tail call

BLACKLIST &
COUNTERS

BPF_HASH

IP SRC-
DST

STATISTICS

DDoS ATTACK
DETECTION

FEATURE
EXTRACTION

FEATURE
EXTRACTION

MITIGATION

RATE MONITOR

BPF_HASH

DROP

Insert and
monitor

DDoS Rules

PASS

TC
FLOWER

Figure 6.1: High-level architecture of the system.

rules into the hardware tables, causing malicious packet to be immediately dropped
in hardware. However, since those tables have often a limited size (typically ∼1-
2K entries), we place the most active top-K malicious talkers in the SmartNIC
hardware tables, where K is the size of those tables, while the remaining ones are
filtered by the XDP program running either on the SmartNIC CPU or on the host,
depending on a configuration option that enables us to compare the results with
different operating conditions.

6.4.1.1 Offloading algorithm

The selection of the top-K malicious talkers that are most appropriate for hard-
ware offloading is carried out by the rate monitor module, which computes a set of
statistics on the dropped traffic and applies a hysteresis-based function to predict
the advantages of possibly modifying the list of offloaded rules that are active in
the SmartNIC. In fact, altering this list requires either computational resources or
time (in our card a single rule update may require up to 2 ms), which may be
unnecessary if the rank of the new top-K rules does not effectively impact on the
mitigation effectiveness.

The pseudo-code of our algorithm is shown in Listing 2. First, it computes a
list of the global top-K sources, which contains both SmartNIC and XDP entries

106

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

Algorithm 2: Offloading algorithm
Input: K, the max # of supported SmartNIC entries
Output: υ′

k ← The list of SmartNIC entries.
1 γk ← TOP-K Global entries
2 υk ← TOP-K SmartNIC entries
3 sortDescending(γk)
4 sortAscending(υk)
5 γ′

k ← γk - υk /* Remove already offloaded entries */
6 υ′

k ← υk - γk /* List of non TOP-K rules */
7 foreach γ′

i,k ∈ γ′
k do

8 βi ← offloadGain(γ′
i,k, υ′

i,k)
9 if βi ≥ threshold then

10 υ′
k ← υ′

k − υ′
i,k /* Remove old entry from offload list */

11 υ′
k ← υ′

k + γ′
i,k /* Add new entry into offload list */

sorted in descending order according to their rate, and a second list containing only
the offloaded entries, i.e., the ones present in the SmartNIC hardware tables, which
is arranged in ascending order. Next, it computes the difference of the above lists,
resulting in two lists containing two disjoint set of elements; the first list contains
all the candidate rules that are not yet in the SmartNIC and the second list includes
the SmartNIC entries that are not in the top-K anymore. At this point, starting
from the first element of the former list, it calculates the possible benefit obtained
by removing the first entry of the second list (given by the ratio between the rate
of the two entries) and inserting this new entry in the SmartNIC; if the value is
greater than a certain threshold, the entry is moved into the offloaded list and
the algorithm continues with the next entry. This threshold is adjusted according
to the current volume of DDoS traffic and it is inversely proportional to it; this
avoids unnecessary changes in the top-K SmartNIC list when the traffic rate is
low (compared to the maximum achievable rate), which may bring a negligible
improvement. On the other hand, it increases the update likelihood when the
volume of traffic is close to the maximum achievable rate; in this scenario, where the
system is overloaded, mitigating even slightly more aggressive talkers may introduce
substantial performance benefits.

6.4.2 Feature extraction
Although not strictly belonging to the mitigation pipeline, the feature extraction

module monitors the incoming traffic and collects relevant parameters required by
the mitigation algorithm (e.g., counting the number of packets for each combination
of source and destination hosts). Being placed right after the mitigation module, it

107

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

receives all the (presumed) benign traffic that has not been previously dropped so
that can be further analyzed and then passed up to the target applications. XDP
represents the perfect technology to implement this component since it provides
(i) the low overhead given by the kernel-level processing and (ii) the possibility to
dynamically change the behavior of the system by re-compiling and re-injecting (in
the kernel) an updated program when we require the extraction of a different set of
features. Moreover, XDP offers the possibility to export the extracted information
into specific key-value data structures shared between the kernel and userspace
(i.e., where the DDoS attack detection algorithm is running) or to directly send the
entire packet up to userspace if a more in-depth analysis is needed. In the former
case, data are stored in a per-CPU eBPF hash map, which is periodically read by
the userspace attack detection application. Since multiple instances of the same
XDP program are executed in parallel on different CPU cores, each one processing
a different packet, the use of a per-CPU map guarantees very fast access to data
thanks to its per-core dedicated memory. As result, each instance of the feature
extraction works independently, saving the statistics of each IP source/destination
on its own private map. In the latter case, a specific eBPF helper is used to copy
packets to a perf event ring buffer, which is then read by the userspace application.

Analysis and Aggregation. Computed traffic statistics are retrieved from each
kernel-level hash-map, aggregated by the companion userspace application and
saved in memory for further processing. This process was found to be relatively
slow; our tests report an average of 30µs to read a single entry from the eBPF
map, requiring more than ten seconds to process the entire dataset in case of large
DDoS attacks (e.g., ∼300K entries). In fact, eBPF does not provide any possi-
bility to read an entire map within a single bpf() system call, hence requiring to
read each single value separately. As consequence, to guarantee coherent data to
the userspace detection application, we should lock the entire table while reading
the values, but this would result in the impossibility for the kernel to process the
current incoming traffic for a considerable amount of time.

To overcome this issue, we adopted a swappable dual-map approach, in which the
userspace application reads data from a first eBPF map that represents a snapshot
of the traffic statistics at a given time, while the XDP program computes the traffic
information for the incoming packets received in the the previous timespan, and
saved in a second map. This process is repeated every time the periodic user-space
detection process is triggered, allowing the detection algorithm to always work with
consistent data. From the implementation point of view, we opted for a swappable
dual-program approach instead of a swappable dual-map because of its reduced
swapping latency. We create two feature extraction XDP programs, each one with
its own hash-map, and swap them atomically by asking the filtering module to
dynamically update the address of the next program in the pipeline, which basically
means updating the target address of an assembly jump instruction.

108

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

6.4.3 Detection
The identification of a DDoS attack is performed by the detection module, which

operates on the traffic statistics presented in the previous section and exploits the
retrieved information to identify the right set of malicious sources, which are then
inserted in the blacklist map used by the filtering module to drop the traffic.

Since the selection of the best mitigation algorithm is out of the focus here, we
provide here only a small description of the possible choices that, however, need to
be carefully selected depending on the characteristics of the environment and the
type of workloads running on the end-hosts. Different approaches are available [149,
92] falling in two main categories: (i) anomaly-based detection mechanisms based
on entropy [19, 18, 23], used to detect variations in the distribution of traffic fea-
tures observed in consecutive timeframes and (ii) signature-based approaches that
employ a-priori knowledge of attack signatures to match incoming traffic and detect
intrusions. Of course, the type of detection algorithm may influence the exported
traffic information on the feature extraction module; however, thanks to the excel-
lent programmability of XDP we can change the behavior of the program without
impacting on the rest of the architecture.

6.4.4 Rate Monitor
Sometimes, a given detection algorithm may erroneously detect some legitimate

sources as attackers. To counter this situation, a specific mechanism is used to
eliminate from the blacklist a source that is no longer considered malicious, e.g.,
because it was considered an attacker by mistake or because it does no longer
participate to the attack. This task is performed by the rate monitor, which starts
from the global list of blacklisted addresses, sorted according to their traffic volume,
and examines the entries that are at the bottom of the list (i.e., the ones sending less
traffic), comparing them with a threshold value; if the current transmission rate of
the source under consideration is below the threshold, defined as the highest rate of
packets with the same source observed under normal network activity, it is removed
from the blacklist. In case the host is removed by mistake, the detection algorithm
will re-add to the list of malicious sources in the next iteration.

6.5 Performance evaluation
This section provides an insight of the benefits of SmartNICs in the important

use case of DDoS mitigation. First, it outlines the test environment and the eval-
uation metrics; then, exploiting the previously described architecture, it analyzes
different approaches that exploit SmartNICs and/or other recent Linux technolo-
gies such as eBPF/XDP for DDoS mitigation, comparing with the performance
achievable with commonly used Linux tools (i.e., iptables).

109

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

6.5.1 Test environment
Our testbed includes a first machine used as packet generator, which creates a

massive DDoS attack with an increasing number of attack sources, and a second
server running the DDoS mitigation pipeline. Both servers are equipped with an
Intel Xeon E3-1245 v5 with a quad-core CPU @3.50GHz, 8MB of L3 cache and
two 16GB DDR4-2400 RAM modules, running Ubuntu 18.04.2 LTS and kernel
4.15. The two machines are linked with two 25Gbps Broadcom Stingray PS225
SmartNICs [80], with each port directly connected to the corresponding one of the
other server. We used Pktgen-DPDK v3.6.4 and DPDK v19.02 to generate the UDP
traffic (with small 64B packets3) simulating the attack. We report the dropping
rate of the system and the CPU usage, which are the two fundamental parameters
to keep into account during an attack. We also measure the capability of the server
to perform real work (i.e., serve web pages) while under attack, comparing the
results of the different mitigation approaches. In this case, the legitimate traffic is
generated using the open-source benchmarking tool weighttp, which creates a high
number of parallel TCP connections towards the device under test; in this case we
count only the successfully completed TCP sessions.

6.5.2 Mitigation performance
The first test measures the ability of the server to react to massive DDoS attacks

that involve an increasing number of sources (i.e., bots), showing the performance
of different mitigation approaches in terms of dropping rate (Mpps) and CPU con-
sumption. We generate 64B UDP packets at line-rate at 25Gbps (i.e., 37.2Mpps);
we consider both a scenario where the traffic is uniformly distributed among all
sources (Figure 6.2a) and a situation where the traffic generated by each source
follows a Gaussian distribution (Figure 6.2b). In addition, we report the CPU
consumption for the first test (uniform distribution) in Figure 6.3.

6.5.2.1 Iptables

One of the most common approaches for DDoS attacks mitigation relies on
iptables, a Linux tool anchored to the netfilter framework that can filter traffic,
perform network address translation and manipulate packets. For this test we
deployed all the rules containing the source IPs to drop in the PREROUTING netfilter
chain, which provides higher efficiency compared to the more common INPUT chain,
which is encountered later in the networking stack. Figure 6.2a and 6.2b show how
the dropping rate of iptables are rather limited, around 2.5-4.5Mpps, even with a

3We use 64B packets because they represent the minimum size of an Ethernet frame and then
are a good measure of the lower bound performance achievable by the system.

110

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

 0

 5

 10

 15

 20

 25

 30

 35

 40

16 64 25
6 1k 4K 16

K
64

K
12

8K

D
ro

p
p

in
g

 r
at

e
(M

p
p

s)

sources

HW + XDP SmartNIC
HW + XDP Host

XDP Host
XDP SmartNIC

Iptables

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

16 64 25
6 1k 4K 16

K
64

K
12

8K

D
ro

p
p

in
g

 r
at

e
(M

p
p

s)

sources

HW + XDP SmartNIC
HW + XDP Host

XDP Host
XDP SmartNIC

Iptables

(b)

Figure 6.2: Dropping rate with an increasing number of attackers. (a): uniformly
distributed traffic; (b): traffic normally distributed among all sources.

relatively small number of attack sources, making this solution incapable of dealing
with the massive DDoS attacks under consideration. This is mainly given by the
linear matching algorithm used by iptables, whose performance degrade rapidly
when an increasing number of rules are used, leading to a throughput almost equal
to zero with more than 4K rules. The CPU consumption (Figure 6.3) confirms this
limitation; using iptables to mitigate large DDoS attacks would saturate the CPUs
of the system, which would be occupied discarding traffic rather then executing the
target services.

6.5.2.2 Host-based mitigation

Compared to iptables, XDP intercepts packets at a lower level of the stack,
right after the NIC driver. This test runs the entire mitigation pipeline in XDP
without any help from the SmartNIC, which simply redirects all the packets to
the host where the XDP program is triggered. The dropping efficiency of XDP is
much higher than iptables, being able to discard ∼26Mpps up to 1K sources, and
still ∼10Mpps with 128K attackers, using all CPU cores of the target machine4.
This performance degradation is due to the eBPF map used (BPF_HASH), in which
the lookup time, needed to match the IP source of the current packet against the
blacklist, is influenced by the total number of map entries.

4In our case, the limiting factor is our Intel Xeon E3-1245 CPU, which is able to drop around
10Mpps within a single core, as opposed to other (more powerful) CPUs that are able to achieve
higher rates (e.g., 24Mpps[75]).

111

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

16 64 25
6 1k 4K 16

K
64

K
12

8K

%
 C

P
U

sources

HW + XDP SmartNIC
HW + XDP Host
XDP Host
XDP SmartNIC
Iptables

Figure 6.3: Host CPU usage of the different mitigation approaches under a simu-
lated DDoS attack (uniform distribution).

6.5.2.3 SmartNIC-based mitigation

In this case the mitigation pipeline is executed entirely on the SmartNIC. We
performed a first test where the attack is mitigated only through an XDP filtering
program in the SmartNIC CPU, without any help from the hardware filter. Results
shown in Figures 6.2a and 6.2b confirm a performance degradation compared to
the host-based mitigation due to the slower CPU of the NIC, balanced by the fact
that we do not consume any CPU cycles in the host (Figure 6.3), hence leaving
room for other applications.

A second test exploits a mixture of hardware filtering and XDP-based soft-
ware filtering in the card. Results demonstrate that for relatively small attack
sources (less than 512), the dropping rate is equal to the maximum achievable rate
(37.2Mpps); in fact, the first K rules (where K=512 in our card) are inserted in the
SmartNIC hardware tables, causing all the packets to be dropped at line rate. How-
ever, when dealing with larger attacks (greater than 1K), the dropping rate imme-
diately decreases, since an increasing number of entries stay outside the SmartNIC
hardware tables; as a consequence, the dropping rate is influenced by the perfor-
mance of the XDP program running in the SmartNIC CPU. This approach may be
reasonable when the DDoS attack rate does not exceed the maximum achievable
dropping rate in the SmartNIC CPU, which in our case is approximately 15Mpps;
handling more massive attacks will cause the SmartNIC to drop packets without
processing, with an higher chances to drop also legitimate traffic, as highlighted in
Section 6.5.3.

112

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

6.5.2.4 Hybrid (NIC Hardware Tables + XDP Host)

In this case the offloading algorithm splits the mitigation pipeline between the
SmartNIC hardware tables and the XDP filtering program running in the host.
We notice that for large attacks, the dropping rate is considerably higher than
the HW + XDP SmartNIC case, thanks to the higher performance of the host
CPU compared to the SmartNIC one. Although hardware filtering is available also
on some “traditional” NICs (e.g., Intel with Flow Director), we were unable to
implement the hybrid approach in them because of the unavailability of hardware
counters to measure the dropped packets for each source, which are required by
our algorithm; however, we cannot exclude that other mitigation algorithms can
leverage the hardware speed-up provided by the above cards as well.

6.5.2.5 Final considerations

Figures 6.2a and 6.2b confirm a clear advantage of the hardware offloading,
which is even more evident depending on the distribution of the traffic. For instance,
in the second scenario (Figure 6.2b, with some sources generating more traffic than
others) we can reach even higher dropping performance, thanks to the offloading
algorithm that places the top-K malicious talkers in the SmartNIC, resulting in
more traffic dropped in hardware. Also the CPU consumption shown in Figure 6.3
confirms the clear advantage of the offloading, particularly when most of the traffic
is handled by the hardware of the SmartNIC, hence avoiding the host CPU to take
care of the above portion of malicious traffic. It is worth noticing that the case
where a server has to cope with a limited number of malicious sources may be rather
common, as the incoming traffic in datacenters may be balanced across multiple
servers (backends), each one being asked to handle a portion of the connections
and, hence, also a subset of the current attackers.

6.5.3 Effect on legitimate traffic
This test evaluates the capability of the system to perform useful work (e.g.,

serve web pages) even in presence of a DDoS attack. We generate 64Bytes UDP
packets towards the server simulating different attack rates and number of attackers,
while a weighttp client generates 1M HTTP requests (using 200 concurrent clients)
towards the nginx server running on the target device. The capability of the server
to perform real work is reported by the number of successfully completed requests/s,
with a timeout of 5 seconds, varying the rate of DDoS traffic.

Results, depicted in Figures 6.4a and 6.4b show the performance with 1K and
4K attackers respectively. In the first case, both hardware-based solutions reach the
same number of connection/s, since almost all entries are dropped by the hardware,
leaving the host’s CPU free to perform real work. The same behavior can be noticed
when the mitigation is performed entirely on the SmartNIC CPU; in this case, the

113

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 5 10 15 20 25 30 35

H
T

T
P

 r
eq

/s

DDoS Traffic (Mpps) - 1K attackers

HW + XDP SmartNIC
HW + XDP Host

XDP Host
XDP SmartNIC

Iptables

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 5 10 15 20 25 30 35

H
T

T
P

 r
eq

/s

DDoS Traffic (Mpps) - 4K attackers

HW + XDP SmartNIC
HW + XDP Host

XDP Host
XDP SmartNIC

Iptables

(b)

Figure 6.4: Number of successfully completed HTTP requests/s under different
load rates of a DDoS attack carried out by (a) 1K attackers and (b) 4K attackers.

host’s CPU is underused, achieving the maximum number of HTTP requests/s that
the DUT is able to handle. However, the performance immediately drop when the
attack rate exceeds 15Mpps, which is the maximum rate that the SmartNIC CPU
sustain; in such scenario, NIC queues become rapidly full, hence dropping packets
without going through the mitigation pipeline and increasing the chance to drop
also legitimate traffic. With respect to the XDP Host mitigation, we notice that
the number of connections/s is initially lower, in presence of small attack rates,
compared to the SmartNIC-based solution, since the host’s CPU has to handle
the HTTP requests and, at the same time, execute the XDP program. However,
when the rate of the attack grows, it will continue to handle an adequate number
of connections/s until 25Mpps, which is the maximum rate that the host XDP
program is able to handle. Finally, iptables-based mitigation results unfeasible
with large attack sources because of its very poor processing efficiency, severely
impacting on the capability of the server to handle the legitimate traffic.

The same analysis is valid for larger attacks (e.g., 4K sources); the main dif-
ference here is that the HW + XDP Host solution performs significantly better in
this case, thanks to the higher processing capabilities of the host’s CPU compared
to the SmartNIC ones.

6.6 Related work
The advantages of using XDP to filter packets at high rates have been largely

discussed and demonstrated [26, 171]; several companies (e.g., Facebook, Cloud-
flare) have integrated XDP in their data center networks to protect end hosts from
unwanted traffic, given the enormous benefits from both filtering performance and

114

6 – Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case

low resource consumption. In particular, in [21] Cloudflare presented a DDoS miti-
gation architecture, called L4Drop [61] that performs packet sampling and dropping
with XDP. Our approach is slightly different; we use an XDP program to extract
the relevant packet headers from all the received traffic, instead of sending the en-
tire samples to the userspace detection application and we consider simpler filtering
rules, which are needed to deal with the SmartNIC hardware limitations. Finally,
we consider in our architecture the use of SmartNICs to improve the packet pro-
cessing, which introduces additional complexity (e.g., select rules to offload), which
are not needed in a host-based solution.

6.7 Conclusions
Given the sheer increase in the amount of traffic handled by modern datacenters,

SmartNICs represent a promising solution to offload part of the network processing
to dedicated (and possibly more optimized) components. In this Chapter we ana-
lyzed the possibility to combine the host processing performed with eBPF/XDP, as
presented in the previous chapters, with the performance speedup that may result
from the hardware offloading. In particular, we explored various approaches that
could be adopted to introduce SmartNICs in server-based data plane processing,
assessing the achievable results in particular for the DDoS mitigation use case. We
described a solution that combines SmartNICs with extended Berkeley Packet Fil-
ter (eBPF)/XDP to handle large amounts of traffic and attackers. The key aspect
of our solution is the adaptive hardware offloading mechanism, which partitions the
attacking sources to be filtered among SmartNIC and/or host, smartly delegating
the filtering of the most aggressive DDoS sources to former.

According to our experiments, the best approach is a combination of hardware
filtering on the SmartNIC and XDP software filtering on the host, which results
more efficient in terms of dropping rate and CPU usage. In fact, running part
of the filtering pipeline on the SmartNIC CPU would bring to inferior dropping
performance due to its slower CPU, resulting in a lower capability to cope with
large and massive DDoS attacks. Our findings suggest that current SmartNICs
can help mitigating the network load on congested servers, but may not represent
a turn-key solution. For instance, an effective SmartNIC-based solution for DDoS
attacks may require the presence of a DDoS-aware load balancer that distributes
incoming datacenter traffic in a way to reduce the amount of attackers landing on
each server, whose number should be compatible with the size of the hardware tables
of the SmartNIC. Otherwise, the solution may require the software running on the
SmartNICs to cooperate with other components running on the host, reducing the
effectiveness of the solution in terms of saved resources in the servers.

115

Chapter 7

Kecleon: A Dynamic Compiler
and Optimizer for Software
Network Data Planes

7.1 Introduction
In recent years, the role of software packet processing in computer network-

ing has increased significantly. Software switches, Kubernetes CNIs, service mesh
data planes, software load-balancers, and software-based in-network computation
are becoming increasingly popular, given the unquestionable advantages in terms of
agility and rapid innovation. However, despite the improved accessibility and flex-
ibility, the performance gap between hardware and software network data-plane is
still evident. To bridge this gap and achieve a better performance-cost trade-off
than the hardware, we need to optimize their performance.

In the previous chapters, we explored, thanks to the dynamic injection of eBPF
programs, combined with the modular design provided by Polycube, the possi-
bility to apply more application-specific optimizations to network functions (e.g.,
bpf-iptables in Chapter 5) at runtime. However, those optimizations were em-
ployed by the NF control plane, which knows the data plane behavior and that is
well aware of the different configuration parameters (e.g., the composition of the
fields in the ruleset) and how they are mapped into the underlying pipeline. At this
point, one question arises: Can we apply those optimizations automatically,
without knowing the semantic and behavior of the NF?

We realized that traditional approaches to design and develop those applications
(both for user-space and kernel-space network functions) are based on a static
compilation: the compiler receives as input a description of the forwarding plane
semantic and outputs a binary code that is agnostic to the actual configuration or
run-time behavior of the NF, as shown in Figure 7.1a. Since this code is executed
on general-purpose servers, standard compilers (e.g., GCC, LLVM) are used to

116

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

5

Entire DP design
and semantic

DP compiler &
optimizer

Configuration data
(e.g., installed rules,

configuration settings)

NF
data path

HLL

RuntimeStatic

(a) Static DP generation
6

Entire DP design
and semantic

HLL

RuntimeStatic

Runtime statistics
and behavior

(e.g., traffic patterns)

Configuration data
(e.g., installed rules,

configuration settings)

NF
data path

Kecleon

(b) Kecleon Dynamic DP generation

Figure 7.1: Static vs. Dynamic generation. The static compiler generates a NF
agnostic data path while Kecleon takes into account runtime data, statistics, and
behavior to generate the NF data path.

generate the software data-plane, which both transform the high-level code into
the target machine code and apply classical compiler optimization techniques (e.g.,
rearrange instructions, inline functions, branch elimination) to generate a more
efficient version of the original software program.

In addition to the static (offline) optimizations, which happen before the pro-
gram is deployed, another branch of optimization techniques used in computer
science falls under the name of adaptive optimizations. An adaptive optimizer can
take advantage of local data conditions to dynamically recompile portions of the
original program based on the runtime execution profile. These techniques have
been successfully applied to a vast range of languages and applications, from JIT-
ed languages such as JVM or JavaScript that use run-time specialization to optimize
hot-code paths during the execution of the program, to database management sys-
tems to optimize the query evaluation time [168], [97]. The majority of compilers
today support Profile Guided Optimizations (PGO) or Feedback Directed Opti-
mizations (FDO) to improve the program run time performance. However, since
these compilers are used to generate generic computer programs, they apply a set of
optimizations and techniques that are entirely independent of the network function
domain. Networking programs need a set of domain-specific optimization that are
not possible without contextual information (i.e., the fact that we are processing
packets, the existence of match-action-tables) that, if carefully adopted, can poten-
tially improve the software data-plane performance [142, 141]. They often involve
lots of manual tweaking and modifications (e.g., batch size, prefetching) that are
not valid for every type of application, or that require a in-depth knowledge of the

117

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

application context, but that can radically change the performance [2].
In this chapter, we propose a dynamic approach to the data plane compilation

where not only the static information but also the runtime data are used to generate
a software data-plane, as shown in Figure 7.1b. Our dynamic compiler, Kecleon,
uses control plane information (e.g., the type of rules installed in a firewall NFs) as
input in the compilation stage to generate a custom version of the original program
that is specialized (and optimized) based on the actual behavior of the NF. In
addition to configuration data, Kecleon instruments the original NF data path
code to retrieve the runtime packet processing behavior and statics (e.g., specific
traffic patterns) that are used to optimize its output further.

As for “standard” compilers, Kecleon applies all the optimizations at the In-
termediate Representation (IR) level, which make it agnostic to the language in
which the NF is written and that allow us to re-use some already existing compiler
optimizations at runtime. It combines static code analysis techniques to gather
information about the runtime behavior of the NF and the type of operations per-
formed inside the NF data plane. Then, it applies a set of different optimization
passes (or templates) that exploit control plane information (e.g., configuration pa-
rameters), runtime data structure content, and dynamic traffic profiles to further
specialize the final software data-plane.

The rest of the Chapter is organized as follows. We first motivate the need
of a dynamic compiler for software data planes by taking as an example different
applications, showing how the knowledge of runtime data can be beneficial for
achieving higher performance (Section 7.2). We then present the main challenges
that we had to address to implement a dynamic compiler for generic applications
and the overall architecture of Kecleon in Section 7.3, together with a description
of the different optimization passes available. Finally, we present more low-level
details of the Kecleon core implementation and its eBPF plugin (Section 7.5) and
a (preliminary) performance evaluation of the improvements that can be achieved
with the use of Kecleon in Section 7.6. Section 7.7 concludes the Chapter.

7.2 The Case for Dynamic Network Function Op-
timizations

In this section, we show how the knowledge of runtime information can be
exploited by a dynamic specializer to improve the throughput and latency of a
given network application.

Performance depends on run-time configuration. NF software is often de-
veloped as a single monolithic block containing different features, which are usually
disabled at runtime or enabled only on specific cases. Since those applications are
released and used within different use cases and for various purposes, it is almost

118

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

 0

 0.5

 1

 1.5

 2

 2.5

Baseline +VLAN +STP +VLAN+STP

T
hr

ou
gh

pu
t

(M
pp

s)

Runtime configuration

Original

Optimized

Figure 7.2: L2 bridge NF (eBPF-TC) performance with variable runtime configu-
ration settings between the original version and the one with the unused features
compiled-out; traffic is always the same across the different runtime configurations.

impossible for the vendors to distribute several versions of the same network func-
tion with different features compiled out, given the apparent difficulties that may
result from their management. Moreover, although the NF developers would make
a non-negligible effort to isolate the code that handles the different features, this
often increases the complexity of the code, making it hard to debug and diagnose,
while still leaving an additional overhead needed to check if the given configuration
is enabled or not. As a result, most of the NFs today pay a non-necessary cost
provided by unused features that waste additional CPU cycles and memory even if
not needed at that specific moment.

For example, a L2 bridge NF developed with support for VLAN and Spanning
Tree (STP) may have those features enabled only under specific circumstances or
only for a subset of servers in a given cluster; however, their overhead, even when
not used, may not be negligible. As we can see in Figure 7.2, the same version of
an eBPF-based bridge NF, compiled with only the needed features can achieve up
to 20% better performance, in terms of throughput, compared to the same version
compiled with support for VLAN and STP, even if they are not used at runtime. In
the same way, the run-time configuration (ruleset) of a firewall NF that supports
the filtering of different fields of a packet may contain rules matching only on a
subset of the entire supported fields. Even in this case, the cost paid to parse,
extract, and process those additional values can be removed, saving other CPU
cycles. Figure 5.8 in Chapter 5 shows that this extra cost is not indifferent.

119

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (M

pp
s)

Consecutive (empty) lookups

Additional cost of
empty tables

(a)

 0

 1

 2

 3

 4

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

LPM

LPM+Large Hash

LPM + Smaller Hash

(b)

Figure 7.3: (a) Overhead given by consecutive match-action empty table lookup
and (b) throughput with different map sizes and algorithms.

Takeaway: Being able to recognize and associate the configuration options installed
in the control plane on a given NF with the corresponding instructions operating
on those variables can allow a dynamic compiler to automatically remove those
additional overheads from the NF and re-create a specialized version of the NF
that is optimized for the given run-time configuration setup.

Performance depends on run-time table content. Many NFs use different
data structures to store data that can be accessed when processing a packet in the
pipeline. Those structures are defined by the developers when writing the NF data
plane, by carefully choosing the appropriate algorithm (e.g., hash, lpm) and the size
that is most appropriate for the data that they will hold. For example, a router NF
may use a longest prefix match table to keep the IP addresses in the routing table
or a stateful firewall NF can use a large hash table to hold the different connections
that pass through it. The values in the data structures can be inserted either by
an external player (e.g., the network administrator) from the control plane of the
network application or by the data plane itself (e.g., conntrack table in a stateful
firewall, filtering database in a L2 learning bridge).

However, at runtime, based on the current values that the table holds, the type,
algorithm, or size of the data structures are not always the most efficient possible.
For example, the pipeline of a vswitch may have some stages with empty ACL
tables, or the routing table of a router may contain only entries with fixed IPs
(e.g., /32). Of course, when designing the data plane, the developer cannot make
any assumption on the type of these values, constructing it in the most general way.

Figure 7.3a shows the cost that a simple NF (in this case, the bpf-iptables
application shown in Chapter 5) pays to perform a lookup into a set of consecutive
match-action tables with no values inside; just performing a lookup to discover that
the table is empty can waste a lot of CPU cycles that can be used to perform other
useful tasks. At the same way, Figure 7.3b shows the throughput of a router NF
that uses a LPM table to hold all the entries in the routing table; if we recognize

120

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

 0

 4

 8

 12

 16

 20

Flow-classify

T
h

ro
u

g
h

p
u

t
(M

p
p

s) Baseline
Cached Computation

Figure 7.4: Throughput improvements when caching the computation of the top-5
flows within a high-locality trace for the DPDK flow-classify sample application.

that those entries can be safely installed within a more efficient table (i.e., a hash
table) we can further improve its throughput. Moreover, if we use a smaller hash
table as a sort of cache for the most used entries, the performance increase is even
more evident since it is more likely that the small table fits entirely into a lower
level cache.
Takeaway: Being able to dynamically read the content of the data structure used
by the NF may allow a dynamic compiler to chose a table (or a set of tables) that
is more appropriate for the current data that are stored. This is not only limited
to the type of the table but also to the actual size or algorithm used.

Performance depends on run-time traffic. As for the previous cases, when
developing the data plane code, the NF developer cannot make any supposition of
the type of traffic the NF will receive, hence making the data plane as general as
possible to perform equally independently from the traffic that is received. However,
Figure 7.4 shows that, under skewed traffic patterns, we can build a fast path by
partially computing values for a set of high-volume flows, drastically improving the
performance of the original NF.
Takeaway: A runtime compiler that is able to transparently detect specific traffic
patterns can dynamically create a fast path code that is optimized for the most
common scenario, improving the performance of the original NF drastically.

121

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

7.3 Kecleon System Design

7.3.1 Design Goal
Kecleon aims at building an optimized software data path by leveraging runtime

information such as the configuration of a NF or the runtime content of the match-
action tables. Its main goal is to provide a unified architecture and frameworks that
can be used across different software network function implementations, reusing the
same type of transformations and optimizations.

To achieve this goal, Kecleon applies the optimizations at the compiler Inter-
mediate Representation (IR) level, which in addition to the data plane indepen-
dence, provides the following advantages:

1. Faster compilation speed: Once generated, Kecleon keeps the IR representa-
tion of the original program to continuously produce the optimized output
data plane. All the initial compilation steps performed by the compiler’s
fronted (e.g., parse the program, check the syntax) do not need to be per-
formed every time, speeding up the generation of the optimized data planes.

2. Modularity. Every Kecleon pass works independently from each other or uses
the result of other passes as input. This would allow Kecleon to dynamically
compose and chose the optimization passes that should be applied depending
on the runtime data that have been obtained. Such approach also simpli-
fies the development of new passes, which can use the results of other steps
without knowing their details.

3. Reuse existing passes. Working at the IR level would allow Kecleon to take
advantage and interact with some of the same optimizations that conven-
tional compilers use, such as dead-code elimination, dead-store elimination,
and code motion, which can be re-applied at runtime after other Kecleon
transformations.

On the other hand, working at the IR level, compared to applying source-code
level transformations, is way more complicated, requiring compiler’s knowledge
and a certain level of expertise. However, this task is required once for every new
supported data plane. Kecleon defines a common interface for every plugin that is
used to export the runtime information from the data plane (e.g., the content of
the tables) or to apply specific transformation (e.g., create/delete a new table).

7.3.2 Design Challenges and Assumption
Challenge #1: Identify relevant logic. Developing accurate optimizations
for software data-plane is challenging for a number of reasons. Many software
data-planes are too generic and can be implemented in a different number of ways.

122

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

They can perform operations on network packets based on states that may be
hidden deep in the data-plane code, making it extremely difficult to recognize those
operations. To identify specific patterns and apply the given optimization templates
we need to restrict the field of application. Although currently there is not a
standard and structured approach of writing software data-plane code, the advent
of programmable data planes (PDP) has increased the interest into the adoption of
high-level domain-specific languages (DSL), which are specifically designed (and can
be easily adopted) to express the packet processing logic of a network application.
Starting from the description of the data plane that uses one of these DSL languages
(e.g., P4 [33], eBPF [115, 114]), or that adopts specific framework to write NF
code, Kecleon can then easily extract particular patterns into the code (e.g., code
accessing to a specific structure of data or performing operations on the packets)
making easier to apply the different optimizations.

For this reason, Kecleon assumes a clear distinction between stateless and state-
ful operations in the NF data plane. The former indicates the packet processing
logic and forwarding behavior of the NF, while all the stateful operations are per-
formed through a set of fixed functions that access to libraries of different data
structures. This approach is followed by various NF frameworks (e.g., Vigor [167],
Click-NF [106], BESS [73]), while other languages such as eBPF follow this ap-
proach by design (Section 2.2.1 of Chapter 2).

Challenge #2: The cost of instrumentation. Adding additional logic to
characterize input traffic patterns can negatively affect performance, to the point
that that it may nullify the effect of the optimization. This overhead can be reduced
by instrumenting only performance-critical parts in the code.

Challenge #3: Preserve original data-plane semantic. Kecleon must en-
sure that all the compiler transformations and optimizations adopted do not modify
the semantic of the original application. The compiler should introduce safety mea-
sures (e.g., guards) to restore to the original data plane code when the optimization
is not valid anymore.

Challenge #4: Harmless Pipeline Swap. At each execution step, Kecleon
creates a new optimized version of the original program that should replace the old
pipeline. To avoid inconsistency and packet loss, this switch should be performed
atomically, keeping unaltered the processing state in the old pipeline and preserving
the same semantic of the original application.

7.3.3 Design Overview
Figure 7.5 shows the overall system architecture of Kecleon. The input of the

compiler is the data plane code of the application, which is first transformed into

123

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

Software
Data Plane

IR New
(Optimized)
Data Plane

Compiler Runtime

Analysis
(identify configuration variables,

MAT functions)

Instrumentation
(extract traffic patterns,

recurrent flows)

Optimization
(dead code elimination,

data structure specialization, …)

Feedback
Loop

Figure 7.5: Kecleon Architecture

an Intermediate Representation (IR) - the layer where the dynamic optimization
passes are applied as well as the other standard compiler optimizations.
In Kecleon, we distinguish four main steps:

1. Analysis and logic identification (§7.4.1): Once a new application is deployed,
Kecleon starts calling the different analysis passes, which are in charge of
analyzing the data plane code to identify specific patterns (e.g., retrieve con-
figuration variables, operations on match-action tables). Every pass “marks”
the IR code by adding some debug information to the most important in-
structions and stores the result of the analysis into the Kecleon internal data
structures. For instance, if a given analysis pass discovers some Math-Action-
Table (MAT) related methods (e.g., lookup, update), it marks the correspond-
ing IR instruction so that the other passes do not have to perform this analysis
again.

2. Collection and retrieval of run-time statistics (§7.4.2): After the initial anal-
ysis, Kecleon calls the set of available instrumentation passes, which are
used to collect runtime information from running code. According to the de-
bug info set within the previous analysis, these passes usually instruments
the code by adding more instructions (e.g., to save the most frequent flows)
or interact with a specific Kecleon plugin to retrieve the runtime information
(e.g., read the content of a particular table).

3. Data path optimizations (§7.4.3): Within this phase, the actual set of opti-
mization passes are called, which are in charge of performing the dynamic

124

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

transformation to the original code. They use (i) the result of the analysis to
detect candidate methods that can be optimized and (ii) runtime data that
are retrieved from the instrumented code or specific data structures.

4. Pipeline substitution (§7.4.4): Once the optimization phase is completed, Ke-
cleon emits the optimized IR code and calls the compiler’s back-end to gen-
erate the final executable. Then, it gives the control to the back-end specific
plugin, which will take care of performing the actual substitution of the old
pipeline with the newly generated one.

The execution of the optimization pipeline is triggered (i) at specific time slots
or (ii) as a consequence of an external event. In the first case, Kecleon will repeat
the entire process by checking if the runtime conditions have changed. In the second
case, the pipeline can be triggered after an interaction between the control plane and
the data plane, such as the update of a configuration variable or a data structure,
which may invalidate the optimization applied within the previous cycle.

7.4 Kecleon Compilation Pipeline
In this section, we will go through the various steps of the Kecleon compilation

pipeline. We will show how Kecleon interacts with the back-end specific plugin to
identify the instructions that are used to determine the packet processing logic of
the NF and, when needed, we will show more details of the implementation of the
eBPF plugin for Kecleon.

7.4.1 Packet Processing Logic Identification
Identification of configuration instruction. Given their configuration agnos-
tic implementation, most of the software data plane functions need to retrieve
configuration variables at runtime from specific Match-Action-Tables (MAT) or
configuration files, which can be dynamically changed by the control plane without
having to restart the data plane with the new configuration. In most of the NF
frameworks, this is done through the use of fixed APIs that allow both the control
plane to configure those variables and the data plane to retrieve the runtime con-
figuration. Configuration variables have the characteristic of (i) being generated
by a single read from a configuration file or a MAT and (ii) never being modified
during the execution of the data plane.

During the analysis phase, a Kecleon analysis pass operates as described in
Algorithm 3. It scans the entire set of instructions available in the IR code and
retrieves the corresponding signature, which should be identified by the back-end
plugin as a configuration instruction. If the answer is positive, the method and

125

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

Algorithm 3: Identification of configuration instructions
Input: IRM (Module), IR of the original program
Input: P (Plugin), Reference to target Kecleon plugin
Function AnalysisConfigPass:

1 foreach IRinstr in IRM do
2 is_config ← P.IsConfigInstr(IRinstr)
3 if is_config is True and IsReadOnly(IRinstr) then
4 IRM.MarkConfig(IRinstr)

Algorithm 4: Identification of state instructions
Input: IRM (Module), IR of the original program
Input: P (Plugin), Reference to target Kecleon plugin
Function AnalysisStatePass:

1 foreach IRinstr in IRM do
2 is_table← P.IsTableFunction(IRinstr)
3 if is_table is True then
4 tid← P.GetTableID(IRinstr)
5 IRM.MarkTable(IRinstr)
6 IRM.StoreTID(tid)

the associated variable are marked, and their use is tracked along with the execu-
tion of the program. The marking procedure works by constructing specific debug
metadata for the IR instruction, following the DWARF terminology1, which can
be retrieved by the other passes. Kecleon adds to the IR instruction a debug infor-
mation indicating the configuration nature of the function and associates a unique
metadata identifier that references an entry into an internal Kecleon data structure.
This entry contains additional details of the method itself (e.g., if the configuration
variable is stored into a MAT or not, the maximum number of possible values).
The subsequent passes can then use that information to perform the optimizations.

Identification of MAT instructions. As for the configuration variables, Ke-
cleon has to discover the instructions accessing to stateful information, which can
then be retrieved and used by the subsequent optimization passes. Algorithm 4
shows the behavior of this analysis pass; it scans the entire set of instructions to
find the function associated with an operation into a MAT. When found, it “marks”

1The Debugging With Attributed Record Formats (DWARF) is a widely recognized and stan-
dardized debug data format used to store information about a compiled computer program.

126

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

that method (e.g., the lookup function used to read the table content) and extracts
(i) a unique table ID (TID) used to retrieve the table content at runtime, (ii) the
layout associated with the table itself, which contains the type of data structure
used (e.g., array, hash, lpm) and (optionally) (iii) a cost function used by Kecleon
to understand the cost of performing the data structure change.

7.4.1.1 Implementation Details (eBPF Plugin)

We will now take an example the Kecleon eBPF Plugin, and we will apply the
operations to a small code snippet (Listing 7.1) of the Katran load balancer [76],
whose data plane is written in eBPF.
1 vip . port = pckt . f low . port16 [1] ;
2 vip . proto = pckt . f low . proto ;
3 v ip_inf = bpf_map_lookup_ele(&vip_map,& vip) ;
4 i f (! v ip_inf) {
5 vip . port = 0 ;
6 v ip_inf = bpf_map_lookup_ele(&vip_map,& vip) ;
7 i f (! v ip_inf) {
8 return XDP_PASS;
9 }

10 }
11 . . .

Listing 7.1: Sample eBPF code from Katran NF

In an eBPF data path, the only way to set configuration values is to use specific
eBPF maps, which are filled by the control plane when the program starts and
retrieved at runtime from the data plane. On line 3 it performs a lookup into an
eBPF map containing the list virtual IPs associated to a particular flow. The role of
the Kecleon analysis pass is to discover that method and the associated eBPF map
so that the subsequent passes can use the runtime values to optimize the new code.

Once executed, Kecleon generates the IR code of the original eBPF program,
shown in Listing 7.2, which is then given as input to the different analysis passes.
Following the previously-mentioned procedure, the Kecleon analysis pass will rec-
ognize the signatures at line 5 and 12 as an operation to a MAT (in this case,
a map_lookup) and will proceed with the Algorithm 3 to check if the variable
retrieved from the map is later modified in the data plane.
1 %226 = gep %vip , %vip* %22, i 64 0 , i 32 1
2 s t o r e i 16 %220, i 16* %226, align 4
3 %227 = gep %vip , %vip* %22, i 64 0 , i 32 2
4 s t o r e i 8 %167, i 8 * %227, align 2
5 %228 = c a l l i 8 * i n t t o p t r (i 64 1 to i 8 * (i 8 ∗ , i 8 *)*) (i 8 * b i t c a s t (

@vip_map to i 8 *) , i 8 * nonnul l %46) #3
6 %229 = b i t c a s t i 8 * %228 to %vip_meta*
7 %230 = icmp eq i 8 * %228, n u l l
8 br i 1 %230, l a b e l %231, l a b e l %241

127

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

9
10 ; <l a b e l >:231:
11 s t o r e i 16 0 , i 16* %226, align 4
12 %232 = c a l l i 8 ∗ i n t t o p t r (i 64 1 to i 8 * (i 8 * , i 8 *)*) (i 8 * b i t c a s t (

@vip_map to i 8 *) , i 8 * nonnul l %46) #3
13 %233 = b i t c a s t i 8 * %232 to %vip_meta*
14 %234 = icmp eq i 8 * %232, n u l l
15 br i 1 %234, l a b e l %688, l a b e l %235

Listing 7.2: LLVM IR code of the Listing 7.1

We use the LLVM memory dependency analysis (i.e., MemorySSA) to reason
about the interactions between various memory operations, hence detecting if the
variable has been modified or not2. Finally, if the result of the previous analysis
detects that the map and the variables are read-only, the Kecleon analysis pass will
mark the instruction. It will allocate an internal Kecleon data structure holding
the information related to that variable, such as the maximum size of the map,
the layout (eBPF HASH), or the unique map identifier, which are extracted by the
eBPF plugin.

7.4.2 Runtime Statistics and Data Collection
The second phase of the Kecleon compilation pipeline is composed of two steps.

The former is where the actual runtime data of the previously identified instructions
are retrieved; after having identified the configuration and state operations, Kecleon
can retrieve all the runtime values by issuing a request to the back-end plugin. For
instance, in the Katran example shown before, after having identified that vip_inf
is a configuration variable, Kecleon can “ask” the eBPF plugin to retrieve the set
of values within the vip_map.

The latter is where the original data plane code is instrumented to retrieve
more specific information about the current execution of the program, which is
particularly useful to adopt optimizations that improve the performance for par-
ticular traffic patterns There are several ways in which this instrumentation can
be achieved. A first possible approach would be to add a local MAT into the data
plane of the NF that records the values of a packet (e.g., 5-tuple) traversing the
NF. However, this may incur additional and unnecessary overhead if the actions
performed within the NF data plane do not use those fields. A better approach
would be just to monitor the used fields, but this requires to complete an addi-
tional analysis on the NF data plane, making the instrumentation pass aware of

2A careful reader may argue that, if the variable is retrieved from a map with a lookup
operation and is later modified without an update operation, it can still be considered as read-
only. This is not valid for eBPF, where the result of a lookup is a pointer to the entry in the map;
as a consequence, a modification on the pointer’s content will modify the corresponding map.

128

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

the actions performed on the packets or depending on its content.
To avoid this, Kecleon adopts an implicit traffic-specific mechanism by auto-

matically instrumenting the sections of the code that access or modify the internal
state of the NF. In particular, the Kecleon instrumentation pass retrieves all the
MAT accesses and adds a Local MAT that stores the same data of the original
table. It samples only the most-accessed entries within the original MAT and their
corresponding values, saving only a limited number of entries to reduce its size
and overhead. Then, the Kecleon platform-specific plugin exports the entries from
the instrumented MAT using the Kecleon common data format so that the various
optimization passes can easily consume them in a target-independent way.

This approach brings several advantages. First, it does not require any static
analysis on the NF code to retrieve a common set of packet values that should
be representative of the incoming traffic. Second, it gives to Kecleon a more fine-
grained control of instrumentation that is applied. If it recognizes that the overhead
of a single table is minimal or there is no space for improvements, the instrumen-
tation can be disabled only for that specific branch or table, while still allowing to
retrieve information on the other methods. Kecleon can change at runtime the size
of the instrumented tables according to the level of information it needs and the
sampling rate of the instrumented entries, which is a compromise between accuracy
of the instrumented traffic and performance overhead introduced by the instrumen-
tation. Finally, merging all the information coming from the different local MAT,
it is possible to reconstruct the hot code paths and then optimize for them.

7.4.2.1 Implementation Details (eBPF Plugin)

We show here a small example of the bpf-iptables network function presented
in Chapter 5. In Listing 7.3 we illustrate a short code snippet of module matching
the L4 ports of the packet, excluding the colored code that we will explain later. On
line 8, a lookup in the port_map is performed to retrieve the bitvector associated;
then from line 11 to 15 the final bitvector is calculated by performing a bitwise and
operation with the current bitvector obtained in the other steps of the pipeline.
If the resulting bitvector is zero, the default action is applied (e.g., the packet is
dropped); otherwise, the next module in the pipeline is called.
1 u64 ∗ va l = bpf_lookup(&port_map_c , &l4 p o r t) ;
2 (∗ va l)++;
3 bpf_map_update(&cpu_port_map , &l4port , va l) ;
4 i f (l 4 p o r t == 8080) {
5 i s A l l Z e r o = True ;
6 goto NEXT;
7 }
8 e l e = bpf_lookup(&port_map , &l4 p o r t) ;
9 . . .

10 #pragma u n r o l l
11 for (i = 0 ; i < _NR_ELEMENTS; ++i) {

129

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

12 b i t s [i] = b i t s [i] & (e l e−>b i t s) [i] ;
13 i f (res−>b i t s [i] != 0)
14 i s A l l Z e r o = f a l s e ;
15 }
16 goto NEXT;
17 . . .
18 NEXT: ;
19 i f (i s A l l Z e r o) {
20 applyDefaul tAct ion () ;
21 return ;
22 }
23 call_bpf_program (ctx , _NEXT_HOP_1) ;
24 . . .

Listing 7.3: Sample code of the bpf-iptables L4-Port matching module

In the eBPF case, the Kecleon instrumentation uses a per CPU BPF_HASH map
to store all the L4Ports that reaches the original map with a corresponding counter3.
The red code in Listing 7.3 shows the corresponding C code that would be added
by the instrumentation pass.

The Kecleon optimization pass can then try to optimize the code using the
result of the instrumentation. For instance, in this example, if most of the runtime
flows contains packets with L4 port 8080, and the associated bitvector4 contains all
bits at zero, a Kecleon optimization pass can pre-compute the value (green code of
Listing 7.3), and the loop from line 11 to 15 will be avoided, saving a lot of CPU
cycles for the most common case.

7.4.3 Kecleon Data Path Optimizations
In this section, we will describe of the main Kecleon optimization passes and

how they exploit the runtime information gathered during the previous steps to
generate an optimized data plane.

7.4.3.1 Dead Code Elimination Pass (DCE)

The goal of the Kecleon dynamic DCE pass is equivalent to the correspond-
ing DCE pass used in most of the compiler optimization phases; it prunes “dead”
branches and instructions that are considered unreachable at compilation time.

3The instrumented tables can also have entries that are not contained in the original map; this
information is also beneficial to the optimization passes that may optimize the code for the most
common case.

4Kecleon does not know that the map value is a “bitvector”, it just substitutes value in the
code and tries to find a better path using the already existing compiler (LLVM) optimization
passes.

130

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

Algorithm 5: Kecleon Dynamic DCE algorithm
Input: IRM (Module), IR of the original program
Input: P (Plugin), Reference to target Kecleon plugin
Function DynDCEPass:

1 forall IRConfInstr in IRM do
2 runtime_val← P.GetConfigValue(IRConfInstr)
3 if runtime_val.size() > 1 then
4 foreach val in runtime_val do
5 P.IRBuilder.PropagateValueSet(val, IRConfInstr)

else
6 P.IRBuilder.PropagateSingleValue (runtime_val,

IRConfInstr)
7 RunConstantPropagationPass(IRM)
8 RunConstantFoldingPass(IRM)
9 RunDCEPass(IRM)

10 return IRM

This pass works as described in Algorithm 5. As the first step (line 2), the algo-
rithm scans the entire set of IR instructions to find the one marked as configuration
(as described in Section 7.4.1). Then, it interrogates the back-end plugin to re-
trieve the runtime values for the associated configuration variable. It is important
to note that the exported variables can assume different values and types; it is the
role of the Kecleon back-end plugin to provide the required information according
to the defined plugin interface. For example, if a configuration variable is a list,
a parameter is_list is stored into the internal Kecleon data structures during
the analysis step; then, the various optimization passes can use this information
to act differently based on their goal. As the second step (line 3-6), the algo-
rithm substitutes the original configuration instruction with the runtime value (or
set of values). Then, it can directly call the existing compiler passes to automati-
cally perform Constant Propagation, Constant Folding, and Dead Code Elimination
(line 7-9) that will eliminate the unreachable code.

The DCE Pass mentioned above can remove redundancy in the NF code, but
there are some scenarios where it cannot be fully applied. It may happen that,
after the propagation of the configuration, only a subset of the paths into the code
is subjected to the dead code elimination. Within the current state, Kecleon is
not able to recognize this scenario, given the path-insensitive type of analysis that
is applied. A solution would be to use symbolic execution methods to perform a
path-aware DCE, then merge the results of each path to generate the final output.
Although not currently implemented, this extension is part of the future work.

131

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

Algorithm 6: Kecleon Dynamic DSS algorithm
Input: IRM (Module), IR of the original program
Input: P (Plugin), Reference to target Kecleon plugin
Function DynDSSPass:

1 forall IRTableInstr in IRM do
2 tid← IRM.RetrieveTID(IRTableInstr)
3 info← P.GetTableInfo(tid)
4 values← P.GetTableValues(tid)
5 if IsDSSFeasible(info, values) then
6 new_info = ApplyDSSToTable(info)
7 P.CheckCostFunction(new_info, info)
8 P.IRBuilder.CreateNewTable(new_info, IRTableInstr)

9 return IRM

7.4.3.2 Data Structure Specialization Pass (DSS)

The Kecleon DSS Pass is in charge of analyzing the runtime content of the
MATs used by the NF data plane and modify their layout, size, or algorithm to the
one that better performs under the given runtime conditions.

For example, knowing which field of a key in a Longest Prefix Match (LPM)
table indicates the prefix, under specific circumstances (e.g., all entries have the
same prefix) the Kecleon DSS could automatically convert the LPM table into a
hash table. Algorithm 6 shows the behavior of this pass.

It starts by extracting the runtime values from the map using the Table Identifier
(TID) taken by the previous analysis pass and retrieved from the debug information
associated with the IR instruction. Then, depending on the runtime values, it
decides if the data structure content matches a possible transformation. If a cost
function is given, Kecleon first checks if the new change may provide the expected
performance benefits; otherwise, the transformation is discarded. For frameworks
that offer a clear definition of the data structures and their implementations, their
associated cost function can be automatically deducted using static analysis or
symbolic execution methods [124], [126], instead of requiring a manual effort from
the plugin developer.
Note: Today, many NFs are stateful, where packet processing updates states that,
in turn, influences the packet data path. Changing the data structure used by the
data plane of a NF may be dangerous if the table is modified within the data plane
itself. If the newly inserted entries invalidate the assumption used by the DSS Pass
when it has performed the optimization, we may corrupt the original application
semantic. As a consequence, Kecleon applies the DSS Pass only to tables that are
not modified in the data plane (the DSS Analysis Pass can recognize this situation).
A change in those tables can happen only from the control plane, and, in this

132

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

scenario, Kecleon triggers the execution of the optimization pipeline to re-evaluate
the feasibility of the optimization.

7.4.3.3 Cached Computation (CC) Pass

The CC Pass can be seen as a further specialization of the DSS pass, where
together with the runtime MAT values also the results of the instrumented MAT are
used. The results of the instrumentation give a hint to the different optimization
passes about the most common paths into the code or the most used entries in
a MAT. The Cached Computation (CC) Pass can reduce the overhead given by
specific memory accesses by, as the name suggests, caching the computation of the
most accessed entries within the code itself or in other, more efficient, tables. For
example, a simple lookup operation in a large MAT may be in charge of 70% of
the overall overhead of the NF, causing a lot of cache misses, even if the number of
matched entries (taken from the runtime instrumentation) represent only the 5%
of the overall number of entries in the table. The CC Pass can take the 5% of the
most used entries within the MAT table and compile them directly in the code,
by pre-computing the result of the MAT lookup for those entries. A parameter
controls the maximum number of entries under which a table is directly compiled.
The pre-computation depends on the original layout of the compiled table and the
type of variable used for the lookup. For example, the cached entries within a hash
table are converted into a series of switch-case matching the single key value used
in the lookup, or a hash of this value for complex entries5. In the latter case, a
pre-computed collision-free hash (among the other cached values) is used to access
to the pre-computed variable. In the same way, for an LPM table of IP addresses,
we could derive from the instrumentation a set of most-accessed IPs, whose lookup
result can be pre-computed and cached within the code, using the same procedure
described before.

Avoid inconsistency of cached entries. When the Kecleon CC Pass caches
some entries directly in the code it needs to ensure that a subsequent modification
in the table, which may happen both from the control plane and the data plane for
non-configuration MAT, is reflected immediately in the cached code that should
then use the updated information instead of the old (directly compiled in the code)
one. That means that packets coming after the update should be immediately redi-
rected to the original code branch (i.e., performing regular table lookup) instead
of accessing the cached information. Triggering the execution of the Kecleon opti-
mization pipeline every time an update is found would result on new packets coming

5With complex entries we indicate variables that contains more than one primitive value (e.g.,
a C struct).

133

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

immediately after the update to match the old cached version until Kecleon emits
a new pipeline, breaking one of the main Kecleon assumption to keep the original
data plane semantic untouched.

To avoid this issue, Kecleon makes use of guards. A guard is a control variable
(or a specific MAT) that contains the version of the currently cached computation
that is compiled in the code; before accessing the CC, the NF data plane checks if
the value contained in the guard matches the one of the compiled version - if not, it
falls back to the “default” path, which corresponds to the original NF data plane.
The update of the guard is done atomically before the map associated with it is
modified (of course, if the update does not impact the cached entries, the guard is
not modified), and the way it is done depends on the given target platform.

For example, in the eBPF plugin implementation, the guard map is implemented
as an additional PER_CPU_ARRAY table with a single entry containing the current
version of the code. Then, an additional kprobe is attached to the bpf_map_update
helper; therefore, when an update is performed, the Kecleon eBPF program at-
tached to the kprobe is executed and it updates the guard consequently, guarantee-
ing the consistency of the original data plane. Of course, the use of guards increases
the overhead of the NF since it wastes some CPU cycles to check its version before
accessing the cached entries. We have measured its cost in Section 7.6.

7.4.4 Kecleon Pipeline Update
The execution of the Kecleon optimization pipeline can be triggered (i) as a

consequence of an intercepted control plane event (e.g., the update of a configura-
tion MAT) or (ii) periodically at given time slots. Kecleon performs the updates of
the original data plane in a non-destructively way. When all the optimizations are
applied, Kecleon calls the rest of the compiler pipeline to convert the IR represen-
tation of the NF data plane into the target native language where the data plane
is executed. During the rebuild, the old running data-path can continue process-
ing packets without any service disruption. The newly created data-path (within
its binary form) is then passed to the specific Kecleon plugin that has the role of
injecting and substituting it with the previous pipeline.

To do so, Kecleon installs, before the original pipeline, an additional program
whose purpose is to “jump” to the first instruction of the pipeline, using the address
of the new code, through an indirect jump (or trampoline). Basically, when the new
code is ready, it is loaded (and properly relocated) to a new address into the process
address space that will be pointed by the trampoline instruction. The new pipeline
representation is constructed side by side with the running data-path, it is then
inserted into the pipeline by atomically redirecting this jump instruction to the
address of the new code.
Note: As we have seen in the previous chapters, Polycube provides a more natural
way to perform this pipeline substitution, thanks to the use of the program array

134

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

map, whose role is to hold a set of “pointers” to different eBPF programs. By
performing a tail-call to a given index of the array map, the corresponding eBPF
program is called. In our case, by updating the index of the old pipeline with the
new one we can quickly achieve the swap behavior.

7.5 Prototype Implementation
Kecleon is a specialization of an existing compiler that adds networking domain

information to existing (or new) compiler optimizations passes by extracting the
needed information from the source code and the runtime execution of the NF, a
similar mechanism used by Just-In-Time (JIT) compilers.
Kecleon Core. We implemented Kecleon using the LLVM [99] framework (v10.0.0)
and, in particular, through the MCJIT execution engine, which provides an envi-
ronment for the code generation and the manipulation of the original data plane
code within its IR representation. Kecleon is a separate daemon running in the
system that receives the NF code. It converts the code into the LLVM IR repre-
sentation (i.g., a single or a set of LLVM Module objects), which are then analyzed
and optimized through the various Kecleon optimization passes. The conversion
between the source code and the LLVM IR representation is done by the com-
piler front-end (e.g., Clang for languages in the C language family); Kecleon does
not perform any manipulation on the Abstract Syntax Tree (AST) of the compiler
front-end and then is independent from the front-end. It would then be possible
to run Kecleon by directly providing the IR representation of the original program
(i.e., the .bc file) instead of the entire source code.

7.5.1 eBPF Plugin
The Kecleon eBPF plugin is implemented as part of the BPF Compiler Col-

lection (BCC), which already includes a set of abstractions and helper functions
to interact with the eBPF APIs. Also, BCC is already built around the Clang/L-
LVM toolchain, hence simplifying the interaction between the eBPF source code
and the rest of the compiler toolchain. Since Polycube (§4) is also builts around
BCC, this Kecleon eBPF plugin implementation can be used to dynamically (and
automatically) optimize Polycube NFs, as we will see in Section 7.6.

7.6 Evaluation
The goal of this evaluation section, although still in a preliminary phase, aims

at validating (i) the performance improvements that real-world applications can

135

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

achieve by applying the Kecleon dynamic compilation framework and (ii) how much
operational and performance Kecleon can introduce in the normal NF workflow.

7.6.1 Setup
Our testbed includes a first server used as DUT running the firewall under

test and a second used as packet generator (and possibly receiver). The DUT
encompasses an Intel Xeon Gold 5120 14-cores CPU @2.20GHz (hyper-threading
disabled) with support for Intel’s Data Direct I/O (DDIO) [84], 19.25 MB of L3
cache and two 32GB RAM modules. The packet generator is equipped with an In-
tel® Xeon CPU E3-1245 v5 4-cores CPU @3.50GHz (8 cores with hyper-threading),
8MB of L3 cache and two 16GB RAM modules. Both servers run Ubuntu 18.04.1
LTS, with the packet generator using kernel 4.15.0-36 and the DUT running kernel
4.19.0. Each server has a dual-port Intel XL710 40Gbps NIC, each port directly
connected to the corresponding one of the other server.

7.6.2 eBPF NFs (Polycube)
In this section, we took some of the eBPF-based NFs implemented in Polycube,

and we evaluated the corresponding performance improvements that result from
the use of Kecleon to optimize their pipeline. Figure 7.6 shows the result of this
evaluation for four different NFs.

The effectiveness and performance advantages brought by Kecleon depend on
different factors. The first one, is the way the data plane of the NF is written. We
haven’t performed any modification to the original code of the Polycube NFs under
consideration but, it is important to note that most of these NFs are developed with
the dynamic reloading idea available within eBPF and Polycube. Therefore, there
are a lot of “manual” modification already applied to the source code that further
improves the speed of the original NF data plane. Nevertheless, the performance
advantages brought by the use of Kecleon are evident with an improvement range
that goes from 20 to 50% under different scenarios.

The other two factors that affect the performance and the evaluation results are
the runtime configuration of the NF and the input traffic that is received. Kecleon
uses instrumentation to gather runtime information about the traffic received by
the NF and optimize the data path accordingly. If the traffic has a well-defined
behavior and a high locality, the improvements with the use of Kecleon are more
evident. The same is valid for the type of MAT values and configuration setting.
We have evaluated ten different configuration settings and 20 various input traffic
traces for each NF under consideration; we have reported the average, maximum,
and minimum throughput obtained under the different runs in Figure 7.6. We will
further investigate the impact of the configuration and input traffic in Section 7.6.3.

136

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

 0

 1

 2

 3

 4

 5

L2 Bridge Router NAT LB (DSR)

Th
ro

ug
hp

ut
 (M

pp
s)

Original
Average Opt.

Maximum Opt.
Minimum Opt.

Figure 7.6: Single-core throughput for various Polycube eBPF-based NFs. We
report the average, maximum, and minimum throughput values under different
configuration and traffic setup when using Kecleon to generate the optimized code.

7.6.3 eBPF-firewall (bpf-iptables)
In this section, we evaluated the effectiveness of Kecleon with a more complex

application, such as the one presented in Chapter 5, i.e., bpf-iptables. We have
used Classbench [155] to generate ten different configuration settings for the firewall
and tested them with three various packet traces with different localities of traffic.
The no locality trace contains traffic that is uniformly distributed among the entire
ruleset; this is the worst scenario for Kecleon optimization passes that rely on the
results of the instrumentation to optimize the output code (e.g., the CC Pass in
Section 7.4.3.3). On the other hand, the high locality trace contains a set of elephant
flows matching a subset of the entire ruleset, which is a more favorable scenario for
the Kecleon dynamic passes.

As we can see in Figure 7.7, in all three different cases, the Kecleon dynamic
compilation approach provides performance advantages, which are more evident
when a high locality trace is used. With the no locality trace, the improvement
is less visible since the cost paid for the instrumentation impacts more than the

137

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

 0

 1

 2

 3

 4

No locality Low locality High locality

Th
ro

ug
hp

ut
 (M

pp
s)

Original
Optimized

Figure 7.7: Single-core throughput for bpf-iptables. We report the through-
put under three different Classbench generated traces with no locality (traffic is
uniformly distributed) to high locality (few elephant flows).

enhancement that we can get from the instrumentation-based optimization passes
and, some time can even invalidate the improvements of the other passes (e.g., DSS
or DCE). We will evaluate the cost of the instrumentation in Section 7.6.4.1.

7.6.4 Microbenchmarks
7.6.4.1 Instrumentation overhead

The overhead of Kecleon comes mainly from the instrumentation phase, where
the original data plane code is “augmented” with additional instructions used to
gather runtime data from the running data path, which is done automatically by
Kecleon. In Figure 7.8 we evaluated the cost of this overhead for the bpf-iptables
application. The results showed are taken from ten different runs with ten different
configuration settings and traffic profiles, with the average result displayed in the
figure. We disabled for this test the optimization passes so that only the overhead
is calculated. As we can see, the cost of the instrumentation is non-negligible, and
it justifies the “low” improvement with the no locality trace shown in Figure 7.7.
Although better approaches exist in literature to achieve the same goal [78, 146,
164] with a lower cost and better efficiency (e.g., count–min sketches), they require
the use of special data structures or operations that may not be available in every
target support. On the other hand, our approach to applying local MATs, although
more costly, does not require special requirements in terms of data structures.

138

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

 0

 1

 2

Instrumentation Guards

Th
ro

ug
hp

ut
 (M

pp
s)

Original
Overhead

Figure 7.8: Single-core throughput for bpf-iptables when only the Kecleon in-
strumentation is applied, without any of the optimization passes to take effect.
The first bar indicates the overhead of the implicit traffic-specific approach used by
Kecleon, while the second indicates the overhead for the use of guards tables.

Finally, we have also measured the overhead of the guards table, which are
used by the Kecleon CC pass to guarantee the original NF semantic when the
various transformations are applied. The cost of these tables is less evident because
differently from the instrumentation tables, they are used only when a stateful
operation is found; in bpf-iptables only one map, the conntrack table, is used to
save the actual state of the connections.

7.7 Conclusions and Future Works
In this Chapter, we have first demonstrated that the performance of most of

the software data planes today are heavily influenced by runtime parameters, which
cannot be exploited with the standard “static” compilation process. We presented
Kecleon, a runtime compiler for software data planes that exploits runtime infor-
mation, such as configuration data, runtime table contents or current execution
profiles, to generate an optimized version of the original data plane that is more
optimized for its runtime behavior.

Kecleon compilation pipeline is divided into three different steps. An analysis
phase that is used to identify and extract the packet processing logic of the appli-
cation. This step works with the assumption that all the data plane code under
analysis is written according to a DSL language that provides common abstraction

139

7 – Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes

and a fixed set of APIs to perform stateful operations. Then, an instrumentation
phase is used to monitor and extract the current execution profiles of the data
plane. Finally, an optimization phase uses all the previously obtained data to op-
timize the code. For example, it removes redundant instructions that are not hit
within the current configuration and execution profiles, or it substitutes a MAT
with a more efficient version based on its content.

We have evaluated the performance of Kecleon for different eBPF-based NFs
and we have noticed how it is effective under several configuration settings and
traffic profiles.

Future works. We have implemented in Kecleon all the previously mentioned
compiler passes and the eBPF plugin; however, we are still missing the evaluation
of other real-world applications such as OvS-eBPF, Cilium, and Katran, which are
developed independently. We are planning to include a DPDK plugin for Kecleon
so that it can be used within a vast range of applications and DPDK-based frame-
works. According to our “manual” experiments, the performance benefits that we
can get from those applications are even more evident, given the greater control
of operations that can be performed and, consequently, of the optimization that
Kecleon can apply.

Finally, as mentioned in Section 7.4.3.1, we are planning to extend the type of
analysis that is currently performed in Kecleon by adding a path-aware analysis.
Through symbolic execution and program slicing methods, Kecleon can apply even
more aggressive optimization that are not possible within the current prototype.

140

Chapter 8

Concluding Remarks

In this dissertation, we explored the new challenges and requirements that soft-
ware packet processing is facing in the microservice era. Traditional monolithic
approaches to build and run virtual network services result contradictory to the
cloud-native paradigm, and simply transforming those monolithic patterns into
analogous cloud-native counterparts results in manageability, scalability, and per-
formance problems. Our attempt to solve this issue brought us to the design and
implementation of Polycube and Kecleon, and to an additional study of how Smart-
NICs can be used to improve such network services. The former’s goal is to provide
a common infrastructure to build, manage, and run such networking services that
follow the same paradigms on microservices applications. Polycube services can
be dynamically combined to form in-kernel service chains and can be externally
controlled through a specific set of service-specific APIs that allow customizing the
service behavior. The Polycube service data plane, which uses the extended Berke-
ley Packet Filter (eBPF), enables an unprecedented level of customization, pro-
grammability, and performance improvements that were not possible before while
keeping compatibility with existing applications and with “native” environments.
On the other hand, Kecleon enables an automatic specialization of those network
services by exploiting the runtime knowledge of configuration data, data structures
content and execution profiles to automatically generate an optimized version of
the original network function data plane that is more efficient for current runtime
behavior.

In the future, we envision a novel model of software network functions that
satisfy the following conditions. First, they should be able to provide advanced,
programmable and efficient services to cloud-native applications, while being able
to dynamically adapt to the continuously changing run-time environment and con-
figuration conditions that are common within this scenario. Second, they should
adhere to the same design patterns and concepts of the microservice paradigms,
enabling a continuous delivery workflow, horizontal scaling while efficiently using
network resources and greater control through well-defined APIs.

141

8 – Concluding Remarks

We hope that the combination of the works presented in this dissertation can
lay the foundation for a new model of packet processing applications that can be
dynamically re-combined, re-generated and re-optimized without sacrificing pro-
grammability, extensibility and performance. We release the source code of all the
systems presented in this thesis and we hope they will be useful for both researchers
and industrial system developers to build upon them.

142

Appendix A

List of Publications

The following is the complete list of publications carried out during the Ph.D.

• Miano, S., & Risso, F. (2020, March). A Micro-service Approach for Cloud-
Native Network Services. In 2020 ACM SIGCOMM Symposium on SDN
Research (SOSR) ACM.

• Miano, S., & Risso, F. (2020). Transforming a traditional home gateway
into a hardware-accelerated SDN switch. International Journal of Electrical
and Computer Engineering, 10(3), 2668.

• Miano, S., Bertrone, M., Risso, F., Bernal, M. V., Lu, Y., Pi, J., & Shaikh,
A. (2019, September). A Service-Agnostic Software Framework for Fast and
Efficient In-Kernel Network Services. In 2019 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS) (pp. 1-
9). IEEE.

• Miano, S., Doriguzzi-Corin, R., Risso, F., Siracusa, D., & Sommese, R.
(2019). Introducing SmartNICs in Server-Based Data Plane Processing: The
DDoS Mitigation Use Case. IEEE Access, 7, 107161-107170.

• Miano, S., Bertrone, M., Risso, F., Bernal, M. V., Lu, Y., & Pi, J. (2019).
Securing Linux with a faster and scalable iptables. ACM SIGCOMM Com-
puter Communication Review, 49(3), 2-17.

• Miano, S., Bertrone, M., Risso, F., & Tumolo, M. (2018, August). Acceler-
ating linux security with ebpf iptables. In Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos (pp. 108-110).

• Bertrone, M., Miano, S., Pi, J., Risso, F., & Tumolo, M. (2018). Toward an
eBPF-based clone of iptables. Netdev’18.

143

A – List of Publications

• Miano, S., Bertrone, M., Risso, F., Tumolo, M., & Bernal, M. V. (2018,
June). Creating complex network services with ebpf: Experience and lessons
learned. In 2018 IEEE 19th International Conference on High Performance
Switching and Routing (HPSR) (pp. 1-8). IEEE.

• Miano, S., Risso, F., & Woesner, H. (2017, July). Partial offloading of Open-
Flow rules on a traditional hardware switch ASIC. In 2017 IEEE Conference
on Network Softwarization (NetSoft) (pp. 1-9). IEEE.

• Bonafiglia, R., Miano, S., Nuccio, S., Risso, F., & Sapio, A. (2016, Oc-
tober). Enabling NFV services on resource-constrained CPEs. In 2016 5th
IEEE International Conference on Cloud Networking (Cloudnet) (pp. 83-88).
IEEE.

144

Bibliography

[1] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. “InKeV:
In-Kernel Distributed Network Virtualization for DCN”. In: SIGCOMM
Comput. Commun. Rev. 46.3 (July 2018). issn: 0146-4833. doi: 10.1145/
3243157.3243161. url: https://doi.org/10.1145/3243157.3243161.

[2] Omid Alipourfard and Minlan Yu. “Decoupling Algorithms and Optimiza-
tions in Network Functions”. In: Proceedings of the 17th ACM Workshop on
Hot Topics in Networks. 2018, pp. 71–77.

[3] Mohammad Alizadeh et al. “CONGA: Distributed Congestion-Aware Load
Balancing for Datacenters”. In: Proceedings of the 2014 ACM Conference on
SIGCOMM. SIGCOMM ’14. Chicago, Illinois, USA: Association for Com-
puting Machinery, 2014, pp. 503–514. isbn: 9781450328364. doi: 10.1145/
2619239.2626316. url: https://doi.org/10.1145/2619239.2626316.

[4] Esraa Alomari et al. “Botnet-based distributed denial of service (DDoS) at-
tacks on web servers: classification and art”. In: arXiv preprint arXiv:1208.0403
(2012).

[5] Arbor Networks. Worldwide Infrastructure Security Report. 2017. url: https:
/ / pages . arbornetworks . com / rs / 082 - KNA - 087 / images / 13th % 5C _
Worldwide%5C_Infrastructure%5C_Security%5C_Report.pdf (visited on
03/17/2019).

[6] AT&T. AT&T DIRECTV. [Online; last-retrieved 08-April-2020]. 2020. url:
https://www.att.com/bundles/directv-wireless/.

[7] BCC Authors. HTTP Filter. [Online; last-retrieved 15-November-2018]. Feb.
2016. url: https://github.com/iovisor/bcc/tree/master/examples/
networking/http_filter.

[8] Cilium Authors. BPF and XDP Reference Guide. July 2018. url: https:
//cilium.readthedocs.io/en/latest/bpf/ (visited on 03/17/2019).

[9] Cilium authors. Diagram of Kubernetes / kube-proxy iptables rules architec-
ture. Jan. 2019. url: https://web.archive.org/web/20200414131802/
https://github.com/cilium/k8s-iptables-diagram.

145

https://doi.org/10.1145/3243157.3243161
https://doi.org/10.1145/3243157.3243161
https://doi.org/10.1145/3243157.3243161
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/2619239.2626316
https://pages.arbornetworks.com/rs/082-KNA-087/images/13th%5C_Worldwide%5C_Infrastructure%5C_Security%5C_Report.pdf
https://pages.arbornetworks.com/rs/082-KNA-087/images/13th%5C_Worldwide%5C_Infrastructure%5C_Security%5C_Report.pdf
https://pages.arbornetworks.com/rs/082-KNA-087/images/13th%5C_Worldwide%5C_Infrastructure%5C_Security%5C_Report.pdf
https://www.att.com/bundles/directv-wireless/
https://github.com/iovisor/bcc/tree/master/examples/networking/http_filter
https://github.com/iovisor/bcc/tree/master/examples/networking/http_filter
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/
https://web.archive.org/web/20200414131802/https://github.com/cilium/k8s-iptables-diagram
https://web.archive.org/web/20200414131802/https://github.com/cilium/k8s-iptables-diagram

BIBLIOGRAPHY

[10] Lighttpd authors. weighttp: a lightweight and simple webserver benchmarking
tool. [Online; last-retrieved 10-November-2018]. Nov. 2018. url: https://
web.archive.org/web/20190718231322/http://redmine.lighttpd.
net/projects/weighttp/wiki.

[11] Netfilter Authors. Moving from iptables to nftables. [Online; last-retrieved
10-October-2018]. Oct. 2018. url: https : / / web . archive . org / web /
20200308125421/https://wiki.nftables.org/wiki-nftables/index.
php/Moving_from_iptables_to_nftables.

[12] Polycube Authors. Polycube: eBPF/XDP-based software framework for fast
network services running in the Linux kernel. [Online; last-retrieved 22-
July-2019]. Jan. 2019. url: https://github.com/polycube- network/
polycube.

[13] The Network Service Mesh authors. What is Network Service Mesh? Jan.
2020. url: https://web.archive.org/web/20200414131411/https:
//networkservicemesh.io/docs/concepts/what-is-nsm/.

[14] Pablo Neira Ayuso. [PATCH RFC PoC 0/3] nftables meets bpf. [Online;
last-retrieved 29-March-2019]. Feb. 2018. url: https://web.archive.org/
web/20191024111400/https://www.mail-archive.com/netdev@vger.
kernel.org/msg217425.html.

[15] Paul Baran. “On distributed communications networks”. In: IEEE transac-
tions on Communications Systems 12.1 (1964), pp. 1–9.

[16] Tom Barbette et al. “A High-Speed Load-Balancer Design with Guaranteed
Per-Connection-Consistency”. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA: USENIX
Association, Feb. 2020, pp. 667–683. isbn: 978-1-939133-13-7. url: https:
//www.usenix.org/conference/nsdi20/presentation/barbette.

[17] BCC authors. BPF Compiler Collection (BCC). url: https://web.archive.
org/web/20181106133143/https://www.iovisor.org/technology/bcc.

[18] Sunny Behal and Krishan Kumar. “Detection of DDoS attacks and flash
events using information theory metrics–an empirical investigation”. In: Com-
puter Communications 103 (2017), pp. 18–28.

[19] Sunny Behal and Krishan Kumar. “Detection of DDoS attacks and flash
events using novel information theory metrics”. In: Computer Networks 116
(2017), pp. 96–110.

146

https://web.archive.org/web/20190718231322/http://redmine.lighttpd.net/projects/weighttp/wiki
https://web.archive.org/web/20190718231322/http://redmine.lighttpd.net/projects/weighttp/wiki
https://web.archive.org/web/20190718231322/http://redmine.lighttpd.net/projects/weighttp/wiki
https://web.archive.org/web/20200308125421/https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://web.archive.org/web/20200308125421/https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://web.archive.org/web/20200308125421/https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://github.com/polycube-network/polycube
https://github.com/polycube-network/polycube
https://web.archive.org/web/20200414131411/https://networkservicemesh.io/docs/concepts/what-is-nsm/
https://web.archive.org/web/20200414131411/https://networkservicemesh.io/docs/concepts/what-is-nsm/
https://web.archive.org/web/20191024111400/https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://web.archive.org/web/20191024111400/https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://web.archive.org/web/20191024111400/https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://www.usenix.org/conference/nsdi20/presentation/barbette
https://www.usenix.org/conference/nsdi20/presentation/barbette
https://web.archive.org/web/20181106133143/https://www.iovisor.org/technology/bcc
https://web.archive.org/web/20181106133143/https://www.iovisor.org/technology/bcc

BIBLIOGRAPHY

[20] Mauricio Vásquez Bernal et al. “A Transparent Highway for Inter-Virtual
Network Function Communication with Open VSwitch”. In: Proceedings
of the 2016 ACM SIGCOMM Conference. SIGCOMM ’16. Florianopolis,
Brazil: Association for Computing Machinery, 2016, pp. 603–604. isbn: 9781450341936.
doi: 10 . 1145 / 2934872 . 2959068. url: https : / / doi . org / 10 . 1145 /
2934872.2959068.

[21] Gilberto Bertin. “XDP in practice: integrating XDP into our DDoS mit-
igation pipeline”. In: Technical Conference on Linux Networking, Netdev.
2017.

[22] Matteo Bertrone et al. “Accelerating Linux Security with EBPF Iptables”.
In: Proceedings of the ACM SIGCOMM 2018 Conference on Posters and De-
mos. SIGCOMM ’18. Budapest, Hungary: Association for Computing Ma-
chinery, 2018, pp. 108–110. isbn: 9781450359153. doi: 10.1145/3234200.
3234228. url: https://doi.org/10.1145/3234200.3234228.

[23] Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. “An empirical
evaluation of information metrics for low-rate and high-rate DDoS attack
detection”. In: Pattern Recognition Letters 51 (2015), pp. 1–7.

[24] Andy Bierman, Martin Björklund, and Kent Watsen. RESTCONF Protocol.
RFC 8040. Jan. 2017. doi: 10.17487/RFC8040. url: https://rfc-editor.
org/rfc/rfc8040.txt.

[25] Martin Bjorklund. “The YANG 1.1 Data Modeling Language”. In: (2016).
url: https://tools.ietf.org/html/rfc7950.

[26] Brenden Blanco and Yunsong Lu. Leveraging XDP for Programmable, High
Performance Data Path in OpenStack. Oct. 2016. url: https : / / www .
openstack.org/videos/barcelona-2016/leveraging-express-data-
path - xdp - for - programmable - high - performance - data - path - in -
openstack (visited on 03/17/2019).

[27] Roberto Bonafiglia et al. “Enabling NFV services on resource-constrained
CPEs”. In: 2016 5th IEEE International Conference on Cloud Networking
(Cloudnet). IEEE. 2016, pp. 83–88.

[28] Gianluca Borello. Sysdig and Falco now powered by eBPF. Feb. 2019. url:
https://web.archive.org/web/20200528103951/https://sysdig.com/
blog/sysdig-and-falco-now-powered-by-ebpf/.

[29] D. Borkmann. net: add bpfilter. [Online; last-retrieved 30-June-2018]. Feb.
2018. url: https://web.archive.org/web/20190517134842/https:
//lwn.net/Articles/747504/.

[30] Daniel Borkmann. bpf, x64: implement retpoline for tail call. Feb. 2018. url:
https://web.archive.org/web/20200624134452/https://lwn.net/
Articles/747859/.

147

https://doi.org/10.1145/2934872.2959068
https://doi.org/10.1145/2934872.2959068
https://doi.org/10.1145/2934872.2959068
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.17487/RFC8040
https://rfc-editor.org/rfc/rfc8040.txt
https://rfc-editor.org/rfc/rfc8040.txt
https://tools.ietf.org/html/rfc7950
https://www.openstack.org/videos/barcelona-2016/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack
https://www.openstack.org/videos/barcelona-2016/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack
https://www.openstack.org/videos/barcelona-2016/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack
https://www.openstack.org/videos/barcelona-2016/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack
https://web.archive.org/web/20200528103951/https://sysdig.com/blog/sysdig-and-falco-now-powered-by-ebpf/
https://web.archive.org/web/20200528103951/https://sysdig.com/blog/sysdig-and-falco-now-powered-by-ebpf/
https://web.archive.org/web/20190517134842/https://lwn.net/Articles/747504/
https://web.archive.org/web/20190517134842/https://lwn.net/Articles/747504/
https://web.archive.org/web/20200624134452/https://lwn.net/Articles/747859/
https://web.archive.org/web/20200624134452/https://lwn.net/Articles/747859/

BIBLIOGRAPHY

[31] Daniel Borkmann. bpf: add csum_diff helper to xdp as well. In Linux Kernel,
commit 205c380778d0. Jan. 2018. url: https://web.archive.org/web/
20200405150954/https://patchwork.ozlabs.org/patch/863867/.

[32] Daniel Borkmann. Optimize BPF tail calls for direct jumps. Nov. 2019. url:
https://web.archive.org/web/20200624134635/https://lwn.net/
Articles/805660/.

[33] Pat Bosshart et al. “P4: Programming protocol-independent packet proces-
sors”. In: ACM SIGCOMM Computer Communication Review 44.3 (2014),
pp. 87–95.

[34] Pat Bosshart et al. “Forwarding Metamorphosis: Fast Programmable Match-
action Processing in Hardware for SDN”. In: Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China:
ACM, 2013, pp. 99–110. isbn: 978-1-4503-2056-6. doi: 10.1145/2486001.
2486011. url: http://doi.acm.org/10.1145/2486001.2486011.

[35] Anat Bremler-Barr, Yotam Harchol, and David Hay. “OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network Func-
tions”. In: Proceedings of the 2016 ACM SIGCOMM Conference. SIGCOMM
’16. Florianopolis, Brazil: Association for Computing Machinery, 2016, pp. 511–
524. isbn: 9781450341936. doi: 10.1145/2934872.2934875. url: https:
//doi.org/10.1145/2934872.2934875.

[36] Jesper Dangaard Brouer. XDP Drivers. [Online; last-retrieved 18-September-
2018]. 2018. url: https : / / web . archive . org / web / 20190514224949 /
https://prototype-kernel.readthedocs.io/en/latest/networking/
XDP/implementation/drivers.html.

[37] Jesper Dangaard Brouer. XDP redirect measurements, gotchas and trace-
points. Aug. 2017. url: https://web.archive.org/web/20180311113307/
https://www.spinics.net/lists/xdp-newbies/msg00269.html.

[38] Jesper Dangaard Brouer. XDP redirect memory return API. Mar. 2018. url:
https://web.archive.org/web/20180316133406/https://lwn.net/
Articles/748866/.

[39] Jesper Dangaard Brouer and Toke Høiland-Jørgensen. “XDP: challenges and
future work”. In: LPC’18 Networking Track. Linux Plumbers Conference.
2018.

[40] Maxweel Carmo et al. “Network-cloud Slicing definitions for Wi-Fi shar-
ing systems to enhance 5G ultra dense network capabilities”. In: Wireless
Communications and Mobile Computing 2019 (2019).

148

https://web.archive.org/web/20200405150954/https://patchwork.ozlabs.org/patch/863867/
https://web.archive.org/web/20200405150954/https://patchwork.ozlabs.org/patch/863867/
https://web.archive.org/web/20200624134635/https://lwn.net/Articles/805660/
https://web.archive.org/web/20200624134635/https://lwn.net/Articles/805660/
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/2486001.2486011
http://doi.acm.org/10.1145/2486001.2486011
https://doi.org/10.1145/2934872.2934875
https://doi.org/10.1145/2934872.2934875
https://doi.org/10.1145/2934872.2934875
https://web.archive.org/web/20190514224949/https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://web.archive.org/web/20190514224949/https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://web.archive.org/web/20190514224949/https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://web.archive.org/web/20180311113307/https://www.spinics.net/lists/xdp-newbies/msg00269.html
https://web.archive.org/web/20180311113307/https://www.spinics.net/lists/xdp-newbies/msg00269.html
https://web.archive.org/web/20180316133406/https://lwn.net/Articles/748866/
https://web.archive.org/web/20180316133406/https://lwn.net/Articles/748866/

BIBLIOGRAPHY

[41] Adrian Caulfield, Paolo Costa, and Manya Ghobadi. “Beyond SmartNICs:
Towards a Fully Programmable Cloud”. In: IEEE International Conference
on High Performance Switching and Routing. June 2018. url: https://
www.microsoft.com/en-us/research/publication/beyond-smartnics-
towards-fully-programmable-cloud/.

[42] Cilium authors. HTTP, gRPC, and Kafka Aware Network Security and Net-
working for Containers with BPF and XDP. url: https://cilium.io/.

[43] Cisco. Cloud-native Network Function. Jan. 2020. url: https : / / web .
archive . org / web / 20200414130638 / https : / / www . cisco . com / c /
dam/m/en_us/network- intelligence/service- provider/digital-
transformation/knowledge- network- webinars/pdfs/1128_TECHAD_
CKN_PDF.pdf.

[44] Cisco. FD.io - Vector Packet Processing. Whitepaper. Intel, 2017. url:
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf.

[45] Mike Cohen. Monitoring Kubernetes Networking with eBPF. Apr. 2020.
url: https://web.archive.org/web/20200624075055/https://www.
flowmill.com/monitoring-kubernetes-networking-with-ebpf/.

[46] Linux community. xdp_redirect_map_kern application. May 2020. url: https:
/ / web . archive . org / web / 20200522140154 / https : / / github . com /
torvalds/linux/blob/master/samples/bpf/xdp_redirect_map_kern.
c/.

[47] J. Corbet. Nftables: a new packet filtering engine. Ed. by LWN.nnet. [Online;
last-retrieved 30-June-2018]. Mar. 2009. url: https://web.archive.org/
web/20200331215756/https://lwn.net/Articles/324989/.

[48] Jonathan Corbet. BPF comes to firewalls. [Online; last-retrieved 29-March-
2019]. Feb. 2018. url: https://web.archive.org/web/20200401061115/
https://lwn.net/Articles/747551/.

[49] Jonathan Corbet. Concurrency management in BPF. Feb. 2019. url: https:
//web.archive.org/web/20200331222010/https://lwn.net/Articles/
779120/.

[50] Edward Cree. Bounded Loops for eBPF. Feb. 2018. url: https://web.
archive . org / web / 20180308141915 / https : / / lwn . net / Articles /
748032/.

[51] CVE-2019-7308. Available from MITRE, CVE-ID CVE-2019-7308. Feb. 2020.
url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-
7308.

[52] CVE-2020-8835. Available from MITRE, CVE-ID CVE-2020-8835. Feb. 2020.
url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-
8835.

149

https://www.microsoft.com/en-us/research/publication/beyond-smartnics-towards-fully-programmable-cloud/
https://www.microsoft.com/en-us/research/publication/beyond-smartnics-towards-fully-programmable-cloud/
https://www.microsoft.com/en-us/research/publication/beyond-smartnics-towards-fully-programmable-cloud/
https://cilium.io/
https://web.archive.org/web/20200414130638/https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf
https://web.archive.org/web/20200414130638/https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf
https://web.archive.org/web/20200414130638/https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf
https://web.archive.org/web/20200414130638/https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf
https://web.archive.org/web/20200414130638/https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://web.archive.org/web/20200624075055/https://www.flowmill.com/monitoring-kubernetes-networking-with-ebpf/
https://web.archive.org/web/20200624075055/https://www.flowmill.com/monitoring-kubernetes-networking-with-ebpf/
https://web.archive.org/web/20200522140154/https://github.com/torvalds/linux/blob/master/samples/bpf/xdp_redirect_map_kern.c/
https://web.archive.org/web/20200522140154/https://github.com/torvalds/linux/blob/master/samples/bpf/xdp_redirect_map_kern.c/
https://web.archive.org/web/20200522140154/https://github.com/torvalds/linux/blob/master/samples/bpf/xdp_redirect_map_kern.c/
https://web.archive.org/web/20200522140154/https://github.com/torvalds/linux/blob/master/samples/bpf/xdp_redirect_map_kern.c/
https://web.archive.org/web/20200331215756/https://lwn.net/Articles/324989/
https://web.archive.org/web/20200331215756/https://lwn.net/Articles/324989/
https://web.archive.org/web/20200401061115/https://lwn.net/Articles/747551/
https://web.archive.org/web/20200401061115/https://lwn.net/Articles/747551/
https://web.archive.org/web/20200331222010/https://lwn.net/Articles/779120/
https://web.archive.org/web/20200331222010/https://lwn.net/Articles/779120/
https://web.archive.org/web/20200331222010/https://lwn.net/Articles/779120/
https://web.archive.org/web/20180308141915/https://lwn.net/Articles/748032/
https://web.archive.org/web/20180308141915/https://lwn.net/Articles/748032/
https://web.archive.org/web/20180308141915/https://lwn.net/Articles/748032/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835

BIBLIOGRAPHY

[53] J. Daly and E. Torng. “TupleMerge: Building Online Packet Classifiers by
Omitting Bits”. In: 2017 26th International Conference on Computer Com-
munication and Networks (ICCCN). 2017, pp. 1–10.

[54] DPDK. Data Plane Development Kit. June 2018. url: https://www.dpdk.
org/ (visited on 03/17/2019).

[55] DPDK. Pktgen Traffic Generator Using DPDK. Aug. 2018. url: http://
dpdk.org/git/apps/pktgen-dpdk.

[56] Korian Edeline et al. “mmb: flexible high-speed userspace middleboxes”. In:
Proceedings of the Applied Networking Research Workshop. 2019, pp. 62–68.

[57] Daniel E. Eisenbud et al. “Maglev: A Fast and Reliable Software Network
Load Balancer”. In: 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). Santa Clara, CA, 2016, pp. 523–535. url:
https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/eisenbud.

[58] Paul Emmerich et al. “MoonGen: A Scriptable High-Speed Packet Gener-
ator”. In: Proceedings of the 2015 Internet Measurement Conference. IMC
’15. Tokyo, Japan: Association for Computing Machinery, 2015, pp. 275–
287. isbn: 9781450338486. doi: 10.1145/2815675.2815692. url: https:
//doi.org/10.1145/2815675.2815692.

[59] ETSI. Network Functions Virtualization. Feb. 2017. url: https://web.
archive.org/web/20200321091042/https://www.etsi.org/technologies/
nfv.

[60] The Technology Evangelist. Kernel Bypass = Security Bypass. Dec. 2017.
url: https : / / web . archive . org / web / 20200107102112 / https : / /
technologyevangelist . co / 2017 / 12 / 05 / kernel - bypass - security -
bypass/.

[61] Arthur Fabre. L4Drop: XDP DDoS Mitigations. 2018. url: https://web.
archive.org/web/20190927231336/https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations/ (visited on 03/17/2019).

[62] Soheli Farhana et al. “Impact of big data congestion in IT: An adaptive
knowledge-based Bayesian network.” In: International Journal of Electrical
& Computer Engineering (2088-8708) 10 (2020).

[63] Seyed Kaveh Fayazbakhsh et al. “Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions using FlowTags”. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, Apr. 2014, pp. 543–546. isbn: 978-1-
931971-09-6. url: https : / / www . usenix . org / conference / nsdi14 /
technical-sessions/presentation/fayazbakhsh.

150

https://www.dpdk.org/
https://www.dpdk.org/
http://dpdk.org/git/apps/pktgen-dpdk
http://dpdk.org/git/apps/pktgen-dpdk
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
https://web.archive.org/web/20200321091042/https://www.etsi.org/technologies/nfv
https://web.archive.org/web/20200321091042/https://www.etsi.org/technologies/nfv
https://web.archive.org/web/20200321091042/https://www.etsi.org/technologies/nfv
https://web.archive.org/web/20200107102112/https://technologyevangelist.co/2017/12/05/kernel-bypass-security-bypass/
https://web.archive.org/web/20200107102112/https://technologyevangelist.co/2017/12/05/kernel-bypass-security-bypass/
https://web.archive.org/web/20200107102112/https://technologyevangelist.co/2017/12/05/kernel-bypass-security-bypass/
https://web.archive.org/web/20190927231336/https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://web.archive.org/web/20190927231336/https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://web.archive.org/web/20190927231336/https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh

BIBLIOGRAPHY

[64] Daniel Firestone et al. “Azure Accelerated Networking: SmartNICs in the
Public Cloud”. In: 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18). Renton, WA: USENIX Association,
2018, pp. 51–66. isbn: 978-1-939133-01-4. url: https://www.usenix.org/
conference/nsdi18/presentation/firestone.

[65] Matt Fleming. A thorough introduction to eBPF. Dec. 2017. url: https:
//lwn.net/Articles/740157/ (visited on 03/17/2019).

[66] Massimo Gallo and Rafael Laufer. “ClickNF: a Modular Stack for Cus-
tom Network Functions”. In: 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, July 2018, pp. 745–
757. isbn: 978-1-939133-01-4. url: https://www.usenix.org/conference/
atc18/presentation/gallo.

[67] Aaron Gember-Jacobson et al. “OpenNF: Enabling Innovation in Network
Function Control”. In: Proceedings of the 2014 ACM Conference on SIG-
COMM. SIGCOMM ’14. Chicago, Illinois, USA: Association for Comput-
ing Machinery, 2014, pp. 163–174. isbn: 9781450328364. doi: 10.1145/
2619239.2626313. url: https://doi.org/10.1145/2619239.2626313.

[68] T. Graf. Why is the kernel community replacing iptables with BPF? [Online;
last-retrieved 30-June-2018]. Apr. 2018. url: https://web.archive.org/
web/20191203111322/https://cilium.io/blog/2018/04/17/why-is-
the-kernel-community-replacing-iptables/.

[69] Brendan Gregg. Linux Extended BPF (eBPF) Tracing Tools. May 2020.
url: https://web.archive.org/web/20200528100948/http://www.
brendangregg.com/ebpf.html.

[70] Brendan Gregg. Security Monitoring with eBPF. Feb. 2017. url: https:
//web.archive.org/web/20200523175543/http://www.brendangregg.
com/Slides/BSidesSF2017_BPF_security_monitoring.pdf.

[71] Pankaj Gupta and Nick McKeown. “Packet classification using hierarchical
intelligent cuttings”. In: Hot Interconnects VII. Vol. 40. 1999.

[72] Sangjin Han et al. “PacketShader: A GPU-Accelerated Software Router”.
In: Proceedings of the ACM SIGCOMM 2010 Conference. SIGCOMM ’10.
New Delhi, India: Association for Computing Machinery, 2010, pp. 195–
206. isbn: 9781450302012. doi: 10.1145/1851182.1851207. url: https:
//doi.org/10.1145/1851182.1851207.

[73] Sangjin Han et al. “SoftNIC: A software NIC to augment hardware”. In:
(2015).

151

https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://www.usenix.org/conference/atc18/presentation/gallo
https://www.usenix.org/conference/atc18/presentation/gallo
https://doi.org/10.1145/2619239.2626313
https://doi.org/10.1145/2619239.2626313
https://doi.org/10.1145/2619239.2626313
https://web.archive.org/web/20191203111322/https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://web.archive.org/web/20191203111322/https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://web.archive.org/web/20191203111322/https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://web.archive.org/web/20200528100948/http://www.brendangregg.com/ebpf.html
https://web.archive.org/web/20200528100948/http://www.brendangregg.com/ebpf.html
https://web.archive.org/web/20200523175543/http://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring.pdf
https://web.archive.org/web/20200523175543/http://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring.pdf
https://web.archive.org/web/20200523175543/http://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring.pdf
https://doi.org/10.1145/1851182.1851207
https://doi.org/10.1145/1851182.1851207
https://doi.org/10.1145/1851182.1851207

BIBLIOGRAPHY

[74] Keqiang He et al. “Presto: Edge-Based Load Balancing for Fast Datacen-
ter Networks”. In: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. SIGCOMM ’15. London, United
Kingdom: Association for Computing Machinery, 2015, pp. 465–478. isbn:
9781450335423. doi: 10.1145/2785956.2787507. url: https://doi.org/
10.1145/2785956.2787507.

[75] Toke Høiland-Jørgensen et al. “The eXpress Data Path: Fast Programmable
Packet Processing in the Operating System Kernel”. In: Proceedings of the
14th International Conference on Emerging Networking EXperiments and
Technologies. CoNEXT ’18. Heraklion, Greece: ACM, 2018, pp. 54–66. isbn:
978-1-4503-6080-7. doi: 10.1145/3281411.3281443. url: http://doi.
acm.org/10.1145/3281411.3281443.

[76] Christian Hopps. “Katran: A high performance layer 4 load balancer”. In:
https://github.com/facebookincubator/katran. Sept. 2019.

[77] Simon Horman. “TC Flower Offload”. In: Technical Conference on Linux
Networking, Netdev. 2017.

[78] Qun Huang et al. “Sketchvisor: Robust network measurement for software
packet processing”. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 2017, pp. 113–126.

[79] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. “NetVM: High
Performance and Flexible Networking Using Virtualization on Commodity
Platforms”. In: Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation. NSDI’14. Seattle, WA: USENIX Asso-
ciation, 2014, pp. 445–458. isbn: 9781931971096.

[80] Broadcom Inc. Stingray PS225: Product Brief. July 2019. url: https://
web.archive.org/web/20200625112605/https://docs.broadcom.com/
doc/PS225-PB.

[81] Docker Inc. Docker. [Online; last-retrieved 30-June-2018]. 2018. url: https:
//www.docker.com/.

[82] Google Inc. Kubernetes: Production-Grade Container Orchestration. [Online;
last-retrieved 22-July-2019]. July 2019. url: https://kubernetes.io/.

[83] Intel. FD.io - Vector Packet Processing. Whitepaper. Intel, 2017.
[84] Intel(R). Intel® Data Direct I/O Technology. [Online; last-retrieved 09-November-

2018]. 2018. url: https : / / web . archive . org / web / 20170226040117 /
https://www.intel.it/content/www/it/it/io/data-direct-i-o-
technology.html.

[85] Rishabh Iyer et al. “Performance contracts for software network functions”.
In: 16th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19). 2019, pp. 517–530.

152

https://doi.org/10.1145/2785956.2787507
https://doi.org/10.1145/2785956.2787507
https://doi.org/10.1145/2785956.2787507
https://doi.org/10.1145/3281411.3281443
http://doi.acm.org/10.1145/3281411.3281443
http://doi.acm.org/10.1145/3281411.3281443
https://github.com/facebookincubator/katran
https://web.archive.org/web/20200625112605/https://docs.broadcom.com/doc/PS225-PB
https://web.archive.org/web/20200625112605/https://docs.broadcom.com/doc/PS225-PB
https://web.archive.org/web/20200625112605/https://docs.broadcom.com/doc/PS225-PB
https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://web.archive.org/web/20170226040117/https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html
https://web.archive.org/web/20170226040117/https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html
https://web.archive.org/web/20170226040117/https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html

BIBLIOGRAPHY

[86] Ethan J. Jackson et al. “SoftFlow: A Middlebox Architecture for Open
vSwitch”. In: 2016 USENIX Annual Technical Conference (USENIX ATC
16). Denver, CO: USENIX Association, June 2016, pp. 15–28. isbn: 978-
1-931971-30-0. url: https : / / www . usenix . org / conference / atc16 /
technical-sessions/presentation/jackson.

[87] Ajit Jaokar. An introduction to Cloud Native applications and Kubernetes.
Mar. 2020. url: https://web.archive.org/web/20200413093940/https:
//www.datasciencecentral.com/profiles/blogs/an-introduction-
to-cloud-native-applications-and-kubernetes.

[88] EunYoung Jeong et al. “mTCP: a Highly Scalable User-level TCP Stack
for Multicore Systems”. In: 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14). Seattle, WA: USENIX Associ-
ation, Apr. 2014, pp. 489–502. isbn: 978-1-931971-09-6. url: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/
jeong.

[89] Vimalkumar Jeyakumar et al. “EyeQ: Practical Network Performance Isola-
tion at the Edge”. In: Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX, 2013, pp. 297–311. isbn: 978-1-931971-00-3. url: https://www.
usenix.org/conference/nsdi13/technical-sessions/presentation/
jeyakumar.

[90] Murad Kablan et al. “Stateless Network Functions: Breaking the Tight Cou-
pling of State and Processing”. In: 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX As-
sociation, Mar. 2017, pp. 97–112. isbn: 978-1-931971-37-9. url: https://
www.usenix.org/conference/nsdi17/technical-sessions/presentation/
kablan.

[91] József Kadlecsik and György Pásztor. “Netfilter performance testing”. In:
(2004).

[92] Priyanka Kamboj et al. “Detection techniques of DDoS attacks: A survey”.
In: 2017 4th IEEE Uttar Pradesh Section International Conference on Elec-
trical, Computer and Electronics (UPCON). IEEE. 2017, pp. 675–679.

[93] Georgios P. Katsikas et al. “Metron: NFV Service Chains at the True Speed
of the Underlying Hardware”. In: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA: USENIX As-
sociation, Apr. 2018, pp. 171–186. isbn: 978-1-939133-01-4. url: https:
//www.usenix.org/conference/nsdi18/presentation/katsikas.

153

https://www.usenix.org/conference/atc16/technical-sessions/presentation/jackson
https://www.usenix.org/conference/atc16/technical-sessions/presentation/jackson
https://web.archive.org/web/20200413093940/https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-cloud-native-applications-and-kubernetes
https://web.archive.org/web/20200413093940/https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-cloud-native-applications-and-kubernetes
https://web.archive.org/web/20200413093940/https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-cloud-native-applications-and-kubernetes
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://www.usenix.org/conference/nsdi18/presentation/katsikas

BIBLIOGRAPHY

[94] Naga Katta et al. “Clove: Congestion-Aware Load Balancing at the Virtual
Edge”. In: Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies. CoNEXT ’17. Incheon, Republic
of Korea: Association for Computing Machinery, 2017, pp. 323–335. isbn:
9781450354226. doi: 10.1145/3143361.3143401. url: https://doi.org/
10.1145/3143361.3143401.

[95] J. Kempf, R. Austein, and IAB. RFC3724: The Rise of the Middle and the
Future of End-to-End: Reflections on the Evolution of the Internet Architec-
ture. USA, 2004.

[96] Eddie Kohler et al. “The Click Modular Router”. In: ACM Trans. Comput.
Syst. 18.3 (Aug. 2000), pp. 263–297. issn: 0734-2071. doi: 10.1145/354871.
354874. url: https://doi.org/10.1145/354871.354874.

[97] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive execution of
compiled queries”. In: 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE. 2018, pp. 197–208.

[98] T.V. Lakshman and D. Stiliadis. “High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching”. In: ACM SIGCOMM
Computer Communication Review. Vol. 28. 4. ACM. 1998, pp. 203–214.

[99] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for life-
long program analysis & transformation”. In: International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–
86.

[100] Rafael Laufer et al. “CliMB: Enabling Network Function Composition with
Click Middleboxes”. In: SIGCOMM Comput. Commun. Rev. 46.4 (Dec.
2016), pp. 17–22. issn: 0146-4833. doi: 10.1145/3027947.3027951. url:
https://doi.org/10.1145/3027947.3027951.

[101] Moon-Sang Lee. [dpdk-dev] about poor KNI performance. Sept. 2015. url:
https://web.archive.org/web/20200420141121/http://mails.dpdk.
org/archives/dev/2015-September/023826.html.

[102] Charles E Leiserson, Harald Prokop, and Keith H Randall. “Using de Bruijn
sequences to index a 1 in a computer word”. In: Available on the Internet
from http://supertech. csail. mit. edu/papers. html 3 (1998), p. 5.

[103] Ming Liu et al. “Offloading distributed applications onto smartNICs using
iPipe”. In: Proceedings of the ACM Special Interest Group on Data Commu-
nication. 2019, pp. 318–333.

[104] Marek Majkowski. Why we use the Linux kernel’s TCP stack. July 2016.
url: https://web.archive.org/web/20200210223048/https://blog.
cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/.

154

https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/3027947.3027951
https://doi.org/10.1145/3027947.3027951
https://web.archive.org/web/20200420141121/http://mails.dpdk.org/archives/dev/2015-September/023826.html
https://web.archive.org/web/20200420141121/http://mails.dpdk.org/archives/dev/2015-September/023826.html
https://web.archive.org/web/20200210223048/https://blog.cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/
https://web.archive.org/web/20200210223048/https://blog.cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/

BIBLIOGRAPHY

[105] Ilias Marinos, Robert N.M. Watson, and Mark Handley. “Network Stack
Specialization for Performance”. In: Proceedings of the 2014 ACM Confer-
ence on SIGCOMM. SIGCOMM ’14. Chicago, Illinois, USA: Association
for Computing Machinery, 2014, pp. 175–186. isbn: 9781450328364. doi:
10.1145/2619239.2626311. url: https://doi.org/10.1145/2619239.
2626311.

[106] Joao Martins et al. “ClickOS and the Art of Network Function Virtualiza-
tion”. In: Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation. NSDI’14. Seattle, WA: USENIX Association,
2014, pp. 459–473. isbn: 9781931971096.

[107] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture”. In: Proceedings of the USENIX
Winter 1993 Conference Proceedings on USENIX Winter 1993 Conference
Proceedings. USENIX’93. San Diego, California: USENIX Association, 1993,
pp. 2–2. url: http://dl.acm.org/citation.cfm?id=1267303.1267305.

[108] S. Miano et al. “A Service-Agnostic Software Framework for Fast and Ef-
ficient in-Kernel Network Services”. In: 2019 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). 2019,
pp. 1–9.

[109] S. Miano et al. “Introducing SmartNICs in Server-Based Data Plane Process-
ing: The DDoS Mitigation Use Case”. In: IEEE Access 7 (2019), pp. 107161–
107170.

[110] Sebastiano Miano. Custom Pktgen-DPDK version. Oct. 2018. url: https:
//github.com/sebymiano/pktgen-dpdk.

[111] Sebastiano Miano. eBPF Iptables with Netfilter conntrack. Mar. 2019. url:
https://github.com/sebymiano/polycube/tree/iptables_linux_
conntrack.

[112] Sebastiano Miano and Fulvio Risso. “Transforming a traditional home gate-
way into a hardware-accelerated SDN switch”. In: International Journal of
Electrical and Computer Engineering 10.3 (2020), p. 2668.

[113] Sebastiano Miano, Fulvio Risso, and Hagen Woesner. “Partial offloading of
OpenFlow rules on a traditional hardware switch ASIC”. In: 2017 IEEE
Conference on Network Softwarization (NetSoft). IEEE. 2017, pp. 1–9.

[114] Sebastiano Miano et al. “Creating complex network services with ebpf: Ex-
perience and lessons learned”. In: 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR). IEEE. 2018, pp. 1–8.

155

https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2619239.2626311
http://dl.acm.org/citation.cfm?id=1267303.1267305
https://github.com/sebymiano/pktgen-dpdk
https://github.com/sebymiano/pktgen-dpdk
https://github.com/sebymiano/polycube/tree/iptables_linux_conntrack
https://github.com/sebymiano/polycube/tree/iptables_linux_conntrack

BIBLIOGRAPHY

[115] Sebastiano Miano et al. “Securing Linux with a Faster and Scalable Ipta-
bles”. In: SIGCOMM Comput. Commun. Rev. 49.3 (Nov. 2019), pp. 2–17.
issn: 0146-4833. doi: 10.1145/3371927.3371929. url: https://doi.org/
10.1145/3371927.3371929.

[116] Rui Miao et al. “SilkRoad: Making Stateful Layer-4 Load Balancing Fast
and Cheap Using Switching ASICs”. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. SIGCOMM ’17.
Los Angeles, CA, USA: ACM, 2017, pp. 15–28. isbn: 978-1-4503-4653-5.
doi: 10.1145/3098822.3098824. url: http://doi.acm.org/10.1145/
3098822.3098824.

[117] Thomas Heinz Michael Bellion. NF-HIPAC: High Performance Packet Clas-
sification for Netfilter. Sept. 2002. url: https://web.archive.org/web/
20051129002028/http://lwn.net/Articles/10951/.

[118] Young Gyoun Moon et al. “Accelerating Flow Processing Middleboxes with
Programmable NICs”. In: Proceedings of the 9th Asia-Pacific Workshop on
Systems. APSys ’18. Jeju Island, Republic of Korea: ACM, 2018, 14:1–14:3.
isbn: 978-1-4503-6006-7. doi: 10 . 1145 / 3265723 . 3265744. url: http :
//doi.acm.org/10.1145/3265723.3265744.

[119] M. Nasimi et al. “Edge-Assisted Congestion Control Mechanism for 5G Net-
work Using Software-Defined Networking”. In: 2018 15th International Sym-
posium on Wireless Communication Systems (ISWCS). 2018, pp. 1–5.

[120] Netronome. Avoid kernel-bypass in your network infrastructure. Jan. 2017.
url: https://web.archive.org/save/https://www.netronome.com/
blog/avoid-kernel-bypass-in-your-network-infrastructure/.

[121] ntop. PF_RING ZC (Zero Copy). 2018. url: https : / / web . archive .
org/web/20190912132122/https://www.ntop.org/products/packet-
capture/pf_ring/pf_ring-zc-zero-copy/ (visited on 03/17/2019).

[122] Orange. Orange TV. [Online; last-retrieved 08-April-2020]. 2020. url: https:
//boutique.orange.fr/tv.

[123] Shoumik Palkar et al. “E2: A Framework for NFV Applications”. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles. SOSP ’15.
Monterey, California: Association for Computing Machinery, 2015, pp. 121–
136. isbn: 9781450338349. doi: 10.1145/2815400.2815423. url: https:
//doi.org/10.1145/2815400.2815423.

[124] Maksim Panchenko et al. “Bolt: a practical binary optimizer for data centers
and beyond”. In: Proceedings of the 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization. IEEE Press. 2019, pp. 2–14.

156

https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3098822.3098824
http://doi.acm.org/10.1145/3098822.3098824
http://doi.acm.org/10.1145/3098822.3098824
https://web.archive.org/web/20051129002028/http://lwn.net/Articles/10951/
https://web.archive.org/web/20051129002028/http://lwn.net/Articles/10951/
https://doi.org/10.1145/3265723.3265744
http://doi.acm.org/10.1145/3265723.3265744
http://doi.acm.org/10.1145/3265723.3265744
https://web.archive.org/save/https://www.netronome.com/blog/avoid-kernel-bypass-in-your-network-infrastructure/
https://web.archive.org/save/https://www.netronome.com/blog/avoid-kernel-bypass-in-your-network-infrastructure/
https://web.archive.org/web/20190912132122/https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://web.archive.org/web/20190912132122/https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://web.archive.org/web/20190912132122/https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://boutique.orange.fr/tv
https://boutique.orange.fr/tv
https://doi.org/10.1145/2815400.2815423
https://doi.org/10.1145/2815400.2815423
https://doi.org/10.1145/2815400.2815423

BIBLIOGRAPHY

[125] Aurojit Panda et al. “NetBricks: Taking the V out of NFV”. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Im-
plementation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016,
pp. 203–216. isbn: 9781931971331.

[126] Luis Pedrosa et al. “Automated Synthesis of Adversarial Workloads for Net-
work Functions”. In: Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication. SIGCOMM ’18. Budapest,
Hungary: Association for Computing Machinery, 2018, pp. 372–385. isbn:
9781450355674. doi: 10.1145/3230543.3230573. url: https://doi.org/
10.1145/3230543.3230573.

[127] Ben Pfaff et al. “The Design and Implementation of Open vSwitch”. In:
Proceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation. NSDI’15. Oakland, CA: USENIX Association, 2015,
pp. 117–130. isbn: 978-1-931971-218.

[128] Salvatore Pontarelli et al. “FlowBlaze: Stateful Packet Processing in Hard-
ware”. In: 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). Boston, MA: USENIX Association, 2019, pp. 531–
548. isbn: 978-1-931971-49-2. url: https://www.usenix.org/conference/
nsdi19/presentation/pontarelli.

[129] Zafar Ayyub Qazi et al. “SIMPLE-Fying Middlebox Policy Enforcement
Using SDN”. In: Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM. SIGCOMM ’13. Hong Kong, China: Association for Computing
Machinery, 2013, pp. 27–38. isbn: 9781450320566. doi: 10.1145/2486001.
2486022. url: https://doi.org/10.1145/2486001.2486022.

[130] Y. Qi et al. “Packet Classification Algorithms: From Theory to Practice”.
In: IEEE INFOCOM 2009. 2009, pp. 648–656.

[131] Barath Raghavan et al. “Software-defined internet architecture: decoupling
architecture from infrastructure”. In: Proceedings of the 11th ACM Workshop
on Hot Topics in Networks. 2012, pp. 43–48.

[132] Felix Rath et al. “SymPerf: Predicting Network Function Performance”. In:
Proceedings of the SIGCOMM Posters and Demos. SIGCOMM Posters and
Demos ’17. Los Angeles, CA, USA: Association for Computing Machinery,
2017, pp. 34–36. isbn: 9781450350570. doi: 10.1145/3123878.3131977.
url: https://doi.org/10.1145/3123878.3131977.

[133] Luigi Rizzo. “Netmap: a novel framework for fast packet I/O”. In: 21st
USENIX Security Symposium (USENIX Security 12). 2012, pp. 101–112.

157

https://doi.org/10.1145/3230543.3230573
https://doi.org/10.1145/3230543.3230573
https://doi.org/10.1145/3230543.3230573
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://doi.org/10.1145/2486001.2486022
https://doi.org/10.1145/2486001.2486022
https://doi.org/10.1145/2486001.2486022
https://doi.org/10.1145/3123878.3131977
https://doi.org/10.1145/3123878.3131977

BIBLIOGRAPHY

[134] Luigi Rizzo and Giuseppe Lettieri. “VALE, a Switched Ethernet for Virtual
Machines”. In: Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies. CoNEXT ’12. Nice, France: As-
sociation for Computing Machinery, 2012, pp. 61–72. isbn: 9781450317757.
doi: 10 . 1145 / 2413176 . 2413185. url: https : / / doi . org / 10 . 1145 /
2413176.2413185.

[135] P. Russell. The netfilter.org project. [Online; last-retrieved 30-June-2018].
1998. url: https://netfilter.org/.

[136] Marta Rybczyńska. Bounded loops in BPF for the 5.3 kernel. July 2019.
url: https://web.archive.org/web/20200518033815/https://lwn.
net/Articles/794934/.

[137] Telecom Italia S.p.A. TIM Vision. [Online; last-retrieved 08-April-2020].
2020. url: https://www.timvision.it/.

[138] Jerome H Saltzer, David P Reed, and David D Clark. “End-to-end ar-
guments in system design”. In: ACM Transactions on Computer Systems
(TOCS) 2.4 (1984), pp. 277–288.

[139] Richard Sanger, Matthew Luckie, and Richard Nelson. “Towards Transform-
ing OpenFlow Rulesets to Fit Fixed-Function Pipelines”. In: Proceedings of
the Symposium on SDN Research. SOSR ’20. San Jose, CA, USA: Associ-
ation for Computing Machinery, 2020, pp. 123–134. isbn: 9781450371018.
doi: 10 . 1145 / 3373360 . 3380844. url: https : / / doi . org / 10 . 1145 /
3373360.3380844.

[140] Vyas Sekar et al. “Design and Implementation of a Consolidated Middle-
box Architecture”. In: Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12). San Jose, CA:
USENIX, 2012, pp. 323–336. isbn: 978-931971-92-8. url: https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/
sekar.

[141] Muhammad Shahbaz and Nick Feamster. “The Case for an Intermediate
Representation for Programmable Data Planes”. In: Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research.
SOSR ’15. https://doi.org/10.1145/2774993.2775000. Santa Clara,
California: Association for Computing Machinery, 2015. isbn: 9781450334518.
doi: 10.1145/2774993.2775000.

[142] Muhammad Shahbaz et al. “Pisces: A programmable, protocol-independent
software switch”. In: Proceedings of the 2016 ACM SIGCOMM Conference.
ACM. 2016, pp. 525–538.

158

https://doi.org/10.1145/2413176.2413185
https://doi.org/10.1145/2413176.2413185
https://doi.org/10.1145/2413176.2413185
https://netfilter.org/
https://web.archive.org/web/20200518033815/https://lwn.net/Articles/794934/
https://web.archive.org/web/20200518033815/https://lwn.net/Articles/794934/
https://www.timvision.it/
https://doi.org/10.1145/3373360.3380844
https://doi.org/10.1145/3373360.3380844
https://doi.org/10.1145/3373360.3380844
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://doi.org/10.1145/2774993.2775000
https://doi.org/10.1145/2774993.2775000

BIBLIOGRAPHY

[143] Justine Sherry et al. “Rollback-Recovery for Middleboxes”. In: Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication. SIGCOMM ’15. London, United Kingdom: Association for Com-
puting Machinery, 2015, pp. 227–240. isbn: 9781450335423. doi: 10.1145/
2785956.2787501. url: https://doi.org/10.1145/2785956.2787501.

[144] Sumeet Singh et al. “Packet Classification Using Multidimensional Cutting”.
In: Proceedings of the 2003 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications. SIGCOMM ’03.
Karlsruhe, Germany: Association for Computing Machinery, 2003, pp. 213–
224. isbn: 1581137354. doi: 10.1145/863955.863980. url: https://doi.
org/10.1145/863955.863980.

[145] Giuseppe Siracusano and Roberto Bifulco. “Is It a SmartNIC or a Key-
Value Store?: Both!” In: Proceedings of the SIGCOMM Posters and Demos.
SIGCOMM Posters and Demos ’17. Los Angeles, CA, USA: ACM, 2017,
pp. 138–140. isbn: 978-1-4503-5057-0. doi: 10.1145/3123878.3132014.
url: http://doi.acm.org/10.1145/3123878.3132014.

[146] Vibhaalakshmi Sivaraman et al. “Heavy-hitter detection entirely in the data
plane”. In: Proceedings of the Symposium on SDN Research. 2017, pp. 164–
176.

[147] V. Srinivasan, S. Suri, and G. Varghese. “Packet Classification Using Tu-
ple Space Search”. In: Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication. SIG-
COMM ’99. Cambridge, Massachusetts, USA: Association for Computing
Machinery, 1999, pp. 135–146. isbn: 1581131356. doi: 10.1145/316188.
316216. url: https://doi.org/10.1145/316188.316216.

[148] V. Srinivasan et al. “Fast and Scalable Layer Four Switching”. In: Proceed-
ings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication. SIGCOMM ’98.
Vancouver, British Columbia, Canada: Association for Computing Machin-
ery, 1998, pp. 191–202. isbn: 1581130031. doi: 10.1145/285237.285282.
url: https://doi.org/10.1145/285237.285282.

[149] A. Srivastava et al. “A Recent Survey on DDoS Attacks and Defense Mech-
anisms”. In: Advances in Parallel Distributed Computing. Ed. by Dhinaha-
ran Nagamalai, Eric Renault, and Murugan Dhanuskodi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 570–580. isbn: 978-3-642-24037-9.

[150] Alexei Starovoitov. bpf: improve verifier scalability. [Online; last-retrieved
02-April-2019]. Apr. 2019. url: https://web.archive.org/web/20200406105518/
https://patchwork.ozlabs.org/cover/1073775/.

159

https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/3123878.3132014
http://doi.acm.org/10.1145/3123878.3132014
https://doi.org/10.1145/316188.316216
https://doi.org/10.1145/316188.316216
https://doi.org/10.1145/316188.316216
https://doi.org/10.1145/285237.285282
https://doi.org/10.1145/285237.285282
https://web.archive.org/web/20200406105518/https://patchwork.ozlabs.org/cover/1073775/
https://web.archive.org/web/20200406105518/https://patchwork.ozlabs.org/cover/1073775/

BIBLIOGRAPHY

[151] Alexei Starovoitov. net: filter: rework/optimize internal BPF interpreter’s
instruction set. In Linux Kernel, commit bd4cf0ed331a. Mar. 2014. url:
https : / / web . archive . org / web / 20200406085303 / https : / / lore .
kernel.org/patchwork/patch/452162/.

[152] Alexei Starovoitov. PATCH BPF-NEXT: Introduce BPF Spinlock. Jan. 2019.
url: https://web.archive.org/web/20200625084026/https://lwn.
net/ml/netdev/20190116050830.1881316-1-ast@kernel.org/.

[153] Radu Stoenescu et al. “SymNet: Scalable Symbolic Execution for Modern
Networks”. In: Proceedings of the 2016 ACM SIGCOMM Conference. SIG-
COMM ’16. Florianopolis, Brazil: Association for Computing Machinery,
2016, pp. 314–327. isbn: 9781450341936. doi: 10.1145/2934872.2934881.
url: https://doi.org/10.1145/2934872.2934881.

[154] Nick Tausanovitch. What Makes a NIC a SmartNIC, and Why is it Needed?
Sept. 2016. url: https : / / web . archive . org / web / 20190616162342 /
https://www.netronome.com/blog/what-makes-a-nic-a-smartnic-
and-why-is-it-needed/ (visited on 03/17/2019).

[155] David E Taylor and Jonathan S Turner. “Classbench: A packet classifica-
tion benchmark”. In: IEEE/ACM transactions on networking 15.3 (2007),
pp. 499–511.

[156] Maroun Tork, Lina Maudlej, and Mark Silberstein. “Lynx: A SmartNIC-
driven Accelerator-centric Architecture for Network Servers”. In: Proceedings
of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 2020, pp. 117–131.

[157] Cheng-Chun Tu, Joe Stringer, and Justin Pettit. “Building an Extensible
Open VSwitch Datapath”. In: SIGOPS Oper. Syst. Rev. 51.1 (Sept. 2017),
pp. 72–77. issn: 0163-5980. doi: 10.1145/3139645.3139657. url: https:
//doi.org/10.1145/3139645.3139657.

[158] William Tu. [iovisor-dev] [PATCH RFC] bpf: add connection tracking helper
functions. [Online; last-retrieved 30-March-2019]. Sept. 2017. url: https://
web.archive.org/web/20200406105231/https://lists.linuxfoundation.
org/pipermail/iovisor-dev/2017-September/001023.html.

[159] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. “EffiCuts:
optimizing packet classification for memory and throughput”. In: ACM SIG-
COMM Computer Communication Review 41.4 (2011), pp. 207–218.

[160] Nic Viljoen. BPF, eBPF, XDP and Bpfilter...What are These Things and
What do They Mean for the Enterprise? [Online; last-retrieved 15-November-
2018]. Apr. 2018. url: https://web.archive.org/web/20190829063109/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-
are-these-things-and-what-do-they-mean-enterprise/.

160

https://web.archive.org/web/20200406085303/https://lore.kernel.org/patchwork/patch/452162/
https://web.archive.org/web/20200406085303/https://lore.kernel.org/patchwork/patch/452162/
https://web.archive.org/web/20200625084026/https://lwn.net/ml/netdev/20190116050830.1881316-1-ast@kernel.org/
https://web.archive.org/web/20200625084026/https://lwn.net/ml/netdev/20190116050830.1881316-1-ast@kernel.org/
https://doi.org/10.1145/2934872.2934881
https://doi.org/10.1145/2934872.2934881
https://web.archive.org/web/20190616162342/https://www.netronome.com/blog/what-makes-a-nic-a-smartnic-and-why-is-it-needed/
https://web.archive.org/web/20190616162342/https://www.netronome.com/blog/what-makes-a-nic-a-smartnic-and-why-is-it-needed/
https://web.archive.org/web/20190616162342/https://www.netronome.com/blog/what-makes-a-nic-a-smartnic-and-why-is-it-needed/
https://doi.org/10.1145/3139645.3139657
https://doi.org/10.1145/3139645.3139657
https://doi.org/10.1145/3139645.3139657
https://web.archive.org/web/20200406105231/https://lists.linuxfoundation.org/pipermail/iovisor-dev/2017-September/001023.html
https://web.archive.org/web/20200406105231/https://lists.linuxfoundation.org/pipermail/iovisor-dev/2017-September/001023.html
https://web.archive.org/web/20200406105231/https://lists.linuxfoundation.org/pipermail/iovisor-dev/2017-September/001023.html
https://web.archive.org/web/20190829063109/https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://web.archive.org/web/20190829063109/https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://web.archive.org/web/20190829063109/https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/

BIBLIOGRAPHY

[161] J. Wallen. An Introduction to Uncomplicated Firewall (UFW). Ed. by Linux.com.
[Online; last-retrieved 30-June-2018]. Oct. 2015. url: https://web.archive.
org/web/20190603093744/https://www.linux.com/learn/introduction-
uncomplicated-firewall-ufw.

[162] Jason Wang and David S. Miller. XDP transmission for tuntap. Dec. 2017.
url: https://web.archive.org/web/20180315083526/https://lwn.
net/Articles/742501/.

[163] Fundamentally? What is RCU. McKenney, Paul E. and Walpole, Jonathan.
Dec. 2007. url: https://web.archive.org/web/20180125051005/https:
//lwn.net/Articles/262464/.

[164] Tong Yang et al. “Elastic Sketch: Adaptive and Fast Network-Wide Measure-
ments”. In: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. SIGCOMM ’18. Budapest, Hungary: Asso-
ciation for Computing Machinery, 2018, pp. 561–575. isbn: 9781450355674.
doi: 10 . 1145 / 3230543 . 3230544. url: https : / / doi . org / 10 . 1145 /
3230543.3230544.

[165] Kenichi Yasukata et al. “StackMap: Low-Latency Networking with the OS
Stack and Dedicated NICs”. In: Proceedings of the 2016 USENIX Conference
on Usenix Annual Technical Conference. USENIX ATC ’16. Denver, CO,
USA: USENIX Association, 2016, pp. 43–56. isbn: 9781931971300.

[166] Arseniy Zaostrovnykh et al. “A Formally Verified NAT”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’17. Los Angeles, CA, USA: Association for Computing Ma-
chinery, 2017, pp. 141–154. isbn: 9781450346535. doi: 10.1145/3098822.
3098833. url: https://doi.org/10.1145/3098822.3098833.

[167] Arseniy Zaostrovnykh et al. “A Formally Verified NAT”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’17. https://doi.org/10.1145/3098822.3098833. Los An-
geles, CA, USA: Association for Computing Machinery, 2017, pp. 141–154.
isbn: 9781450346535. doi: 10.1145/3098822.3098833.

[168] Rui Zhang, Saumya Debray, and Richard T Snodgrass. “Micro-specialization:
dynamic code specialization of database management systems”. In: Proceed-
ings of the Tenth International Symposium on Code Generation and Opti-
mization. 2012, pp. 63–73.

[169] Wei Zhang et al. “OpenNetVM: A Platform for High Performance Net-
work Service Chains”. In: Proceedings of the 2016 Workshop on Hot Top-
ics in Middleboxes and Network Function Virtualization. HotMIddlebox ’16.
Florianopolis, Brazil: Association for Computing Machinery, 2016, pp. 26–
31. isbn: 9781450344241. doi: 10.1145/2940147.2940155. url: https:
//doi.org/10.1145/2940147.2940155.

161

https://web.archive.org/web/20190603093744/https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw
https://web.archive.org/web/20190603093744/https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw
https://web.archive.org/web/20190603093744/https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw
https://web.archive.org/web/20180315083526/https://lwn.net/Articles/742501/
https://web.archive.org/web/20180315083526/https://lwn.net/Articles/742501/
https://web.archive.org/web/20180125051005/https://lwn.net/Articles/262464/
https://web.archive.org/web/20180125051005/https://lwn.net/Articles/262464/
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/3098822.3098833
https://doi.org/10.1145/2940147.2940155
https://doi.org/10.1145/2940147.2940155
https://doi.org/10.1145/2940147.2940155

BIBLIOGRAPHY

[170] Yang Zhang et al. “ParaBox: Exploiting Parallelism for Virtual Network
Functions in Service Chaining”. In: Proceedings of the Symposium on SDN
Research. SOSR ’17. Santa Clara, CA, USA: Association for Computing Ma-
chinery, 2017, pp. 143–149. isbn: 9781450349475. doi: 10.1145/3050220.
3050236. url: https://doi.org/10.1145/3050220.3050236.

[171] Huapeng Zhou, Nikita, and Martin Lau. XDP Production Usage: DDoS Pro-
tection and L4LB. Apr. 2017. url: https://www.netdevconf.org/2.1/
slides/apr6/zhou-netdev-xdp-2017.pdf (visited on 03/17/2019).

162

https://doi.org/10.1145/3050220.3050236
https://doi.org/10.1145/3050220.3050236
https://doi.org/10.1145/3050220.3050236
https://www.netdevconf.org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf
https://www.netdevconf.org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

	List of Tables
	List of Figures
	Introduction
	Summary of Contributions
	Outline
	Research Projects Not Included in This Dissertation

	Background and Motivations
	Userspace vs. Kernelspace networking
	The extended Berkley Packet Filter (eBPF)
	eBPF for Network Functions

	Creating Network Service with eBPF: Experience and Lessons Learned
	Introduction
	Experiences and Insights
	eBPF limitations
	Enabling more aggressive service optimization
	Data structures
	High performance processing with XDP
	Service function chaining

	Experimental Evaluation
	Test environment and evaluation metrics
	Overcoming eBPF limitations
	Enabling more aggressive service optimization
	High performance processing with XDP
	Service function chaining

	Conclusions

	Polycube: A Framework for Flexible and Efficient In-Kernel Network Services
	Introduction
	Design Goals and Challenges
	Architecture Overview
	Unified Point of Control
	Structure of Polycube services
	Remote vs Local services

	APIs and Abstractions
	Transparent port handling
	Fast-slow path interaction
	Debug mechanism
	Table abstractions
	Transparent Support for Multiple Hook Points
	Transparent Services

	Service Chaining Design
	Management and Control Plane
	Model-driven service abstraction

	Implementation
	Polycube Core
	Polycube Services

	Evaluation
	Setup
	Test Applications
	Framework Overheads
	Polycube vs Userspace Frameworks

	Conclusions

	Accelerating Linux Security with eBPF iptables
	Introduction
	Design Challenges and Assumptions
	Guaranteeing filtering semantic
	Efficient classification algorithm in eBPF
	Support for stateful filters (conntrack)
	Working with upstream Linux kernel

	Overall Architecture
	Data plane
	Header Parser
	Chain Selector
	Matching algorithm
	Classification Pipeline
	Connection Tracking

	Control plane
	Evaluation
	Test environment
	System benchmarking
	Realistic Scenarios
	Microbenchmarks

	Additional Discussion
	Conclusions

	Introducing SmartNICs in Server-based Data Plane Processing: the DDoS Mitigation Use Case
	Introduction
	Background
	SmartNICs
	TC Flower

	DDoS Mitigation: Approaches
	Architecture and Implementation
	Mitigation
	Feature extraction
	Detection
	Rate Monitor

	Performance evaluation
	Test environment
	Mitigation performance
	Effect on legitimate traffic

	Related work
	Conclusions

	Kecleon: A Dynamic Compiler and Optimizer for Software Network Data Planes
	Introduction
	The Case for Dynamic Network Function Optimizations
	Kecleon System Design
	Design Goal
	Design Challenges and Assumption
	Design Overview

	Kecleon Compilation Pipeline
	Packet Processing Logic Identification
	Runtime Statistics and Data Collection
	Kecleon Data Path Optimizations
	Kecleon Pipeline Update

	Prototype Implementation
	eBPF Plugin

	Evaluation
	Setup
	eBPF NFs (Polycube)
	eBPF-firewall (bpf-iptables)
	Microbenchmarks

	Conclusions and Future Works

	Concluding Remarks
	List of Publications
	Bibliography

