
Domain Specific Run Time Optimization for Software Data Planes
Extended Abstract

Sebastiano Miano1, Alireza Sanaee1, Fulvio Risso2, Gábor Rétvári3, Gianni Antichi1,
1Queen Mary University of London, UK

2Politecnico di Torino, IT
3MTA-BME Information Systems Research Group & Ericsson Research, HU

1. Motivation
Software Data Planes, packet processing programs imple-
mented on commodity servers, are widely adopted in real
deployments [19, 12, 10, 21, 22]. Network software is usually
compiled using static optimization, yielding a binary that is
agnostic to its run time behavior. Thus, the code may contain
logic for protocols and features that may never be triggered
in deployment, perform costly memory loads to access values
that are only known at run time, or take difficult-to-predict
branches conditioned on variable data.

Dynamic compilation enables program optimization based
on invariant data computed at run time, producing code that
is specialized to the input the program is processing [6, 2].
Generic dynamic compilation tools [4, 17], however, proved
ineffective for packet processing logic whose performance crit-
ically depends on highly variable domain-specific traits, such
as traffic patterns or match-action table content [16, 1, 7]. This
calls for domain-specific dynamic optimizations, specifically
tailored to the networking context. Our benchmarks, obtained
with two common network applications, clearly demonstrate
(Figure 1) this: (i) state-of-the-art generic tools bring minimal
benefits on packet-processing performance; (ii) specializing
networking code for slowly changing input, like flow-rules,
ACLs and control plane policies (Table Specialization and
Run time Configuration bar), substantially improves the per-
formance; and (iii) for maximum performance, networking
code must be specialized with respect to inbound traffic pat-
terns1 (Fast Path bar). The main challenge we tackle in our
paper is to attain similar, or even higher, performance im-
provement by the automatic dynamic compilation of network
code.

2. Limitations of the State of the Art
Online tracing. Dynamic compilation depends on timely
information from the running data plane. Obtaining this, how-
ever, is difficult: lightweight online tracing tools (e.g., Linux
perf [5]) do not provide enough insight to apply meaningful
domain-specific optimizations, whereas tracing packet-level
and instruction-level logs is prohibitively costly. As an exam-
ple, GCC FDO instrumentation, when applied in this context,
may easily incur ~900% mean overhead [13]. Therefore, ex-

1Refer to §2 of the paper for more information.

 0

 4

 8

 12

 16

 20

Firewall (DPDK)

(a)

T
h

ro
u

g
h

p
u

t 
(M

p
p

s
)

+4.2%

Baseline
PGO
Table Specialization

Run time Configuration
Fast Path

Firewall (DPDK)
 0

 4

 8

 12

 16

 20

+7.9%

+42.2%

+4.7%

(b)

Load Balancer (eBPF)
 0

 1

 2

 3

 4

 5

 6

+7.9%

+42.2%

+4.7% +12.2%

+23.9%

(c)

T
h

ro
u

g
h

p
u

t 
(M

p
p

s
)

Figure 1: (a) Impact of AutoFDO+Bolt (PGO) and performance
breakdown when applying a set of domain specific optimiza-
tions to both (b) the DPDK firewall [8] and (c) the Facebook’s
Katran eBPF load balancer [10]. We were unable to run PGO
on the latter, since existing tools do not support eBPF targets.

isting dynamic optimization tools, designed either for generic
software (AutoFDO [4, 11], Bolt [17]) or specifically for the
networking domain [9, 7, 20], mainly perform offline optimiza-
tions using recorded execution traces. This requires operators
to collect representative samples of match-action tables and
predict traffic patterns from production deployments. We ar-
gue, instead, a dynamic compiler for networking code should
work in a fully unsupervised mode where all tracing data
needed for code specialization is collected online.

Domain-specific optimization. ESwitch [16, 18] is the first
functional framework for the unsupervised dynamic optimiza-
tion of software data planes, but it targets only legacy (Open-
Flow) code. PacketMill [9] and NFReducer [7] are more
generic, leveraging the LLVM toolchain [14] instead of Open-
Flow: PacketMill targets the FastClick datapath and NFRe-
ducer optimizes generic network code using symbolic execu-
tion. Our work, Morpheus, is strictly complementary to these
works: (i) it applies similar optimizations but it also introduces
a toolbox of new ones (e.g., branch injection or constant prop-
agation for stable table entries to name a few); (ii) it detects
packet-level dynamics and applies more aggressive optimiza-
tions depending on the specific traffic patterns; and (iii) it is
data plane agnostic as it performs the optimizations at the
IR-level using a portable compiler core.

3. Key Insights
Our main insight is that to squeeze out the maximum perfor-
mance for a software network function, a compiler should be



IR

Feedback 

Loop

Compiler Runtime

Analysis
(Section 4.1)

1

Instrumentation
(Section 4.2)

2

Optimization
(Section 4.3)

3

Update
(Section 4.4)

4

Original 

code

New optimized

code

Figure 2: The Morpheus compiler pipeline.

extended with domain-specific insights that are meaningful
only in the packet processing context. In particular, the system
should be able to specialize the networking code for slowly
changing input, like flow-rules, ACLs and control plane poli-
cies, alongside fast changes in input traffic patterns, which
may open up the space for more aggressive optimizations.

To the best of our knowledge, Morpheus is the first dynamic
data plane compiler able to optimize a software network func-
tion on-the-fly, without any traffic disruption, based on the
network configuration and packet-level dynamics. In addition,
Morpheus works without any a priori knowledge of the run-
ning program, which allows to decouple the system from the
specific framework used by the underlying data plane.

4. Main Artifacts
We design, implement and evaluate a system, called Morpheus,
capable of optimizing network code at run time using domain-
specific dynamic optimization techniques. The different steps
that involve the Morpheus compilation pipeline are shown
in Figure 2. The pipeline is triggered periodically at given
time slots to re-optimize the code for possibly changed traffic
patterns and control plane updates.

The compiler first analyzes the code to understand the pro-
gram control/data flow (§4.1 of the paper). Specifically, it
performs a signature-based call site analysis to track opera-
tions on tables at the Intermediate Representation (IR) level,
and then a combination of memory dependency analysis and
alias analysis to distinguish stateful from stateless operations.
The output of this stage is an IR code marked with debug
information that is stored into the compiler’s internal data
structures. This is fed into the second stage that, starting from
the received debug data, instruments the code to collect run
time data that will drive the subsequent optimization passes
(see §4.2 of the paper). To reduce the run time cost of profiling,
Morpheus uses several dimensions of adaptation to record only
the minimum set of information required for a complete under-
standing of the program behavior. Finally, Morpheus applies
a number of optimizations to the code such as (i) improving
constant propagation & constant folding; (ii) specializing data
structures depending on their actual content; and (iii) creating
a fast path for the most accessed entries in the code (see §4.3
of the paper). To guarantee the consistency of the data plane
under any modification of the invariants the specialized code
relies on, Morpheus injects guards at critical points to allow
the execution to fall back to the unoptimized path whenever
an invariant changes. At the last step, Morpheus replaces the
running data plane with the new, optimized code on the fly
(see §4.4 of the paper).

Implementation. Morpheus is implemented in about 6000
lines of C++ code and relies on the LLVM compiler toolchain
for code manipulation and run time code generation, which
makes it portable across different data plane frameworks and
programming languages. Specifically, Morpheus is composed
of (i) a portable core, containing the compiler passes, and (ii)
a technology-specific plugins to interact with the underlying
data plane framework (i.e., eBPF and DPDK). The plugins are
abstracted via a backend API, which exports a set of functions
for the code to identify match-action table access sites based on
data plane specific call signatures, or compute cost functions
for data structure specialization.

Evaluation. We applied Morpheus to a number of eBPF/XDP-
based packet processing programs from the open-source eBPF
network function virtualization framework Polycube [15] (i.e.,
L2 Switch, Router, NAT, iptables) and Facebook’s Katran load-
balancer [10]. We also tested Morpheus against the DPDK
FastClick Router [3]. We evaluate our solution using both
synthetic and real-world traffic traces, and compared it with
against two optimization tools: eSwitch [16]) and Packet-
Mill [9]. Moreover, we discuss the impact of the adaptive
instrumentation mechanism, the time required to re-compile
and inject the new data plane program, as well as the benefits
of Morpheus under dynamic traffic pattern changes or with
multi-cores programs.

5. Key Results and Contributions

Morpheus can increase up to 2x the packet-processing through-
put of the targeted code, while halving its latency at the 99th
percentile. At the micro-architectural scale, we show also
that Morpheus can reduce the last-level CPU cache misses
by up to 96% while effectively halving the instructions and
branches executed per packet. When compared to state-of-
the-art optimizers, our solution consistently delivers 5 to 10x
improvement over eSwitch when input traffic patterns experi-
ence high locality and Morpheus can apply its most aggressive
optimizations, while it essentially falls back to eSwitch for
uniform traffic. When tested with DPDK, Morpheus produces
a whopping 469% improvement over PacketMill in its best
case scenario, while losing by about 9% in its worst.

Contributions. To summarize, in this paper we:

• demonstrate that tracking packet-level dynamics opens up
new opportunities for network code specialization;

• design and implement Morpheus, a system working with
standard compilers to optimize network code at run time;

• extensively evaluated Morpheus by applying it to two dif-
ferent I/O technologies (i.e., DPDK and eBPF), and a
number of programs including production-grade software;

• plan to share the code in open source together with the
scripts and traces used for out evaluation to foster repro-
ducibility.

2



References
[1] Omid Alipourfard and Minlan Yu. Decoupling Algorithms and Op-

timizations in Network Functions. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, HotNets ’18, page 71–77, New
York, NY, USA, 2018. Association for Computing Machinery.

[2] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers,
and Brian N. Bershad. Fast, Effective Dynamic Compilation. In
Proceedings of the ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation, PLDI ’96, page 149–159, New
York, NY, USA, 1996. Association for Computing Machinery.

[3] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast Userspace
Packet Processing. In Proceedings of the Eleventh ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems,
ANCS ’15, page 5–16, USA, 2015. IEEE Computer Society.

[4] Dehao Chen, David Xinliang Li, and Tipp Moseley. AutoFDO: Auto-
matic Feedback-Directed Optimization for Warehouse-Scale Applica-
tions. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization, CGO ’16, page 12–23, New York, NY,
USA, 2016. Association for Computing Machinery.

[5] Wikipedia contributors. Perf (linux). https://en.wikipedia.org/
wiki/Perf_(Linux), 2018. [Online; accessed 07-August-2021].

[6] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. Compiling java just in time. IEEE
Micro, 17(3):36–43, may 1997.

[7] Bangwen Deng, Wenfei Wu, and Linhai Song. Redundant Logic
Elimination in Network Functions. In Proceedings of the Symposium
on SDN Research, SOSR ’20, page 34–40, New York, NY, USA, 2020.
Association for Computing Machinery.

[8] DPDK. L3 forwarding with access control sample appli-
cation. https://doc.dpdk.org/guides/sample_app_ug/
l3_forward_access_ctrl.html, 2021. [Online; accessed
07-August-2021].

[9] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr.,
and Dejan Kostić. PacketMill: Toward per-Core 100-Gbps Networking.
In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2021, page 1–17, New York, NY, USA, 2021. Association
for Computing Machinery.

[10] Christian Hopps. Katran: A high performance layer 4 load balancer.
September 2019. https://github.com/facebookincubator/
katran.

[11] Google Inc. Propeller: Profile Guided Optimizing Large Scale LLVM-
based Relinker. https://github.com/google/llvm-propeller,
Oct 2019. [Online; accessed 07-August-2021].

[12] James Kempf, Bengt Johansson, Sten Pettersson, Harald Luning, and
Tord Nilsson. Moving the mobile evolved packet core to the cloud.
In Proceedings of the 2012 IEEE 8th International Conference on
Wireless and Mobile Computing, Networking and Communications
(WiMob), WIMOB ’12, page 784–791, USA, 2012. IEEE Computer
Society.

[13] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and
Baris Kasikci. DMon: Efficient Detection and Correction of Data Lo-
cality Problems Using Selective Profiling. In 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21), pages
163–181. USENIX Association, July 2021.

[14] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, page 75,
USA, 2004. IEEE Computer Society.

[15] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu. A Framework
for eBPF-based Network Functions in an Era of Microservices. IEEE
Transactions on Network and Service Management, pages 1–1, 2021.

[16] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos Kis,
Levente Csikor, Ferenc Juhász, Attila Kőrösi, and Gábor Rétvári. Data-
plane Specialization for High-Performance OpenFlow Software Switch-
ing. In Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM ’16, page 539–552, New York, NY, USA, 2016. Association
for Computing Machinery.

[17] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
BOLT: A Practical Binary Optimizer for Data Centers and Beyond. In
Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2019, page 2–14. IEEE Press,
2019.

[18] Gábor Rétvári, László Molnár, Gábor Enyedi, and Gergely Pongrácz.
Dynamic Compilation and Optimization of Packet Processing Pro-
grams. ACM SIGCOMM NetPL, 2017.

[19] Sourcefire. Snort - Network Intrusion Detection & Prevention System.
https://www.snort.org/, nov 2020. [Online; accessed 07-August-
2021].

[20] Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and
Laurent Vanbever. P2GO: P4 Profile-Guided Optimizations. In Hot
Topics in Networks (HotNets). ACM, 2020.

[21] David Wragg. Unimog - Cloudflare’s edge load balancer. sep 2020.
[22] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. Lever-

aging EBPF for Programmable Network Functions with IPv6 Segment
Routing. In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’18,
page 67–72, New York, NY, USA, 2018. Association for Computing
Machinery.

3

https://en.wikipedia.org/wiki/Perf_(Linux)
https://en.wikipedia.org/wiki/Perf_(Linux)
https://doc.dpdk.org/guides/sample_app_ug/l3_forward_access_ctrl.html
https://doc.dpdk.org/guides/sample_app_ug/l3_forward_access_ctrl.html
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://github.com/google/llvm-propeller
https://www.snort.org/

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions

