
Accelerating Network Analytics with an on-NIC Streaming Engine

Sebastiano Mianoa,, Giuseppe Lettierib, Gianni Antichia, Gregorio Procissib

aPolitecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
bUniversità di Pisa, Dipartimento di Ingegneria dell’Informazione, Pisa, Italy

Abstract

Data Stream Processing engines have recently emerged as powerful tools for simplifying the analysis of network
telemetry data. Motivated by the ever-growing volume of data requiring analysis, cutting-edge approaches integrate
them with programmable switches to filter out less relevant traffic and enhance their processing capabilities.

In this paper, we propose an alternative solution: leveraging SmartNICs as high-performance accelerators for stream
processing operations. SmartNICs are commonly deployed in datacenter networks, and their architecture is often
characterized by numerous low-power processors that align seamlessly with the highly parallelizable computational
requirements of standard streaming analysis frameworks.

Starting from WindFlow, a state-of-the-art stream processor, we present an innovative architecture that enables the
offloading of a portion of its computation to a commodity Netronome SmartNIC. We implemented the offload logic
using eBPF, making our solution compatible with any NIC supporting this programming paradigm. We developed a
diverse range of applications (i.e., flow metering, port scan detection and SYN flood attack detection) and show that
our solution can analyze up to 40% more traffic compared to a pure software approach.

Keywords:
Stream Processing, Computation Offload, SmartNICs, Accelerated Data Path, eBPF/XDP

1. Introduction

Advancements in data plane programmability have
allowed operators to gather fine-grained telemetry data
from each switch to be then consolidated at logically
centralized collectors to gain network-wide view [37,
29, 22]. As datacenter networks can encompass hun-
dreds of thousands of switches [17], with each switch
producing millions of reports per second [55], the sheer
volume of data for analysis has become a major bottle-
neck [26, 48, 55]. As a consequence, dealing with such
an ever-increasing data volume presents challenges in

⋆This work was partially supported by the Italian Ministry of Ed-
ucation and Research (MUR) through the ForeLab project (Depart-
ments of Excellence) and the PRIN project NEWTON (Project no.
2022ZA8T22), by the University of Pisa under the “PRA – Progetti
di Ricerca di Ateneo” (Institutional Research Grants) – Project no.
PRA 2022-2023 91 INTERCONNECT, and by the European Union
under the Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership on “Telecommunications of the Fu-
ture” (PE00000001 - program “RESTART”).

Email addresses: sebastiano.miano@polimi.it (Sebastiano
Miano), giuseppe.lettieri@unipi.it (Giuseppe Lettieri),
gianni.antichi@polimi.it (Gianni Antichi),
gregorio.procissi@unipi.it (Gregorio Procissi)

scaling data collection and analysis for telemetry sys-
tems [26, 48, 55].

Recent developments have demonstrated the effec-
tiveness of combining Data Stream Processing (DaSP)
frameworks with programmable switches to capture and
analyze telemetry traffic at scale [19]. DaSP frame-
works offer a simple programming abstraction well-
suited for standard traffic analysis tasks, as demon-
strated in the context of heavy hitter detection, super-
spreader detection, and port scanning [19], among oth-
ers. Programmable switches contribute by efficiently fil-
tering out less relevant traffic that could otherwise over-
whelm the host running the DaSP framework. More-
over, it’s worth noting that most DaSP frameworks
are built upon the Java Virtual Machine (JVM) to fa-
cilitate the implementation of streaming applications
on distributed environments, specifically homogeneous
clusters. This approach introduces notable overheads,
such as serialization/de-serialization and cluster man-
agement. These overheads may not be easily offset
in the context of network data analysis, where the in-
put rate of reports is continuous, and the computational
workload is moderate.

Preprint submitted to Computer Networks February 6, 2024

In this paper we propose a different approach: in-
stead of leveraging programmable switches to scale-
out processing, we ask whether it is possible to di-
rectly offload part of the DaSP analysis logic into com-
modity SmartNICs. Our idea is motivated by two
main observations: (1) SmartNICs are now commod-
ity in datacetenter networks [16], while the adoption
of programmable switches remains limited, and Intel
has recently discontinued the Tofino product line [46];
(2) conventional System-on-Chip (SoC) NICs typically
feature numerous low-frequency processors (e.g., the
Netronome NFP-4000 boasts 60 cores with up to 8
threads each [39]), aligning well with the process-
ing paradigm employed by standard DaSP frameworks,
which heavily rely on parallel computation.

To investigate this approach, we selected Wind-
Flow [31], a stream processing library designed for
multi-core systems based on the C++17 standard, as
a representative DaSP framework, and we examine
the benefits of offloading portions of its computation
pipeline to a Netronome SmartNIC [39]. Our choice is
motivated by the fact that in the context of traffic anal-
ysis it has been shown that WindFlow is the state-of-
the-art solution [12], outperforming popular competing
solutions like Spark [3], Storm [1] and Flink [2]. To
maximize the applicability of our approach, we imple-
mented the offload using eBPF [23], the de-facto pro-
gramming language for end-host networking supporting
different use-cases [32, 41, 34, 36] as well as user-space,
in-kernel and NIC programming. As a consequence,
any NIC with eBPF support can adopt our solution.

We implemented a number of traffic analysis use-
cases: (1) flow metering; (2) port scan detection; and
(3) SYN flood attack detection. We show that our ap-
proach can ingest and analyze up to 40% more traffic
compared to a pure software approach.

2. Data Stream Processing and WindFlow

Stream processing is a computational paradigm de-
signed for handling continuous streams of data in (near)
real-time. This approach involves creating applica-
tions composed of interconnected processing functions
known as operators or transformations, forming a Di-
rected Acyclic Graph (DAG) that defines the entire com-
putational process, as shown in Figure 1.

In this graph, nodes represent stateless or stateful op-
erators responsible for processing data elements, often
referred to as tuples. These operators receive input from
one or multiple streams, transform the data, and pro-
duce one or more output streams. These data trans-
fers between operators are represented as arcs, and are

INPUT STREAM OUTPUT STREAM

APPLICATION

STATE
SOURCE

SINK

CORE FUNCTIONALITY (OPERATOR)

STREAM

Figure 1: Data-flow graph representation of a stream processing ap-
plication.

typically implemented using First-In First-Out (FIFO)
queues, facilitating data transfer between operators. By
executing processing elements in parallel over differ-
ent stream elements, the execution of streaming appli-
cations is expedited.

In our research, we employ WindFlow, a stream pro-
cessing library explicitly designed for single machines
equipped with multi-core CPUs. WindFlow offers sev-
eral features that enable seamless scaling across multi-
ple processing cores, resulting in notable improvements
in both performance and expressiveness.

Indeed, WindFlow provides a diverse range of
operators that can be connected to form the data-flow
graph of an application. These operators include
common streaming functions like map and filter, as
well as advanced parallel operators optimized for
sliding-window computations. These operators can
be internally replicated to increase their throughput,
with each replica working on a subset of the inputs
received from the previous operator. Tuples, which are
implemented as key-value pair records, serve as the
data elements within the graph.

Table 1 reports a subset of the operators offered by
WindFlow1. The graph must always begin with one or
more Source nodes, in which tuples are created, and
terminates with one or more Sink nodes, where tuples
are disposed and the associated memory is recycled.
The Filter node filters all the tuples not respecting a
user-defined predicate. The Map produces one output
per input while the FlatMap produces zero, one or more
outputs per inputs (inputs and outputs may have differ-
ent data types). In addition to those basic operators,
some applications require to periodically repeat user-
defined computations over finite portions of the stream,
having the form of moving windows. WindFlow in-
cludes specialized operators like Keyed and Parallel

Window for expressing window-based computations and

1The full list of WindFlow operators is available at this link:
https://paragroup.github.io/WindFlow/operators.html.

2

https://paragroup.github.io/WindFlow/operators.html

Source

Source Generates a sequence of streaming
items of the same type.

Basic Operators

Map
Applies a one-to-one transforma-
tion, producing one output for each
input.

Filter Applies a transformation producing
zero or one output for each input.

FlatMap Produces one or more outputs for
each input.

Window-based Operators

Keyed
Window

Executes window-based functions.
Windows of different keys are pro-
cessed in parallel, while windows
of the same key are sequential.

Parallel
Window

Executes window-based functions.
All windows, regardless of key, are
processed in parallel.

Sink

Sink Absorbs the input stream of items,
all of the same type.

Table 1: Subset of the standard operators available in WindFlow.

to executing them in parallel when windows activate
very frequently.

Applications in WindFlow are developed using the
MultiPipe construct, which establishes multiple paral-
lel pipelines containing operator replicas. These repli-
cas can communicate with either a single replica or all
replicas of the subsequent operator. When communica-
tion involves all replicas of the next operator, tuple dis-
tribution follows a key-by approach, where tuples with
the same key are forwarded to the same replica of the
receiving operator, facilitating consistent data handling.

WindFlow offers two methods for inserting opera-
tors into the graph: the default approach adds (using the
add method) the operator at the end of the MultiPipe

graph, running it on a dedicated thread and communi-
cating with the previous node through Single-Producer-
Single-Consumer (SPSC) lock-less queues. Alterna-
tively, for optimizing performance with more threads
than available cores, WindFlow provides the “chaining”
mechanism, which merges replicas of different opera-
tors into the same thread, optimizing core usage.

By default, SPSC queues in WindFlow have a

SINK

MAP
(stats)

MAP
(stats)

SINK

SINK

MAP
(flowID)

SOURCE

SOURCE

SOURCE

SOURCE

Figure 2: A WindFlow application for Network Analytics.

bounded capacity and operate in a non-blocking mode,
often involving busy-waiting. Optionally, WindFlow
supports a batching mode, where a configurable number
of tuples is transferred in a single operation, providing
additional flexibility in handling data transfers.

2.1. WindFlow for Network Analytics

Figure 2 shows how WindFlow operators are instanti-
ated to implement a Flow Meter network analytic appli-
cation ([13]). The purpose of the application is to collect
basic per-flow statistics such as number of packets and
number of bytes received. The source operators cap-
ture packets from one or more network interfaces, parse
them to extract the relevant fields (protocol, source and
destination address, source and destination port, packet
length, and so on) and generate the tuples that are sent to
the rest of the pipeline. A Map operator then computes a
flow identifier (FlowID) from a subset of the fields and
appends it to each tuple. Other Map operators further
down the pipeline internally store a hash table that maps
FlowIds to their set of statistics. They use the FlowID
to look up and update the statistics, creating new entries
when they detect a new flow. Finally, the Sink operators
terminate the pipeline by recycling the tuple memory.

The general setup of Figure 2 can be found in other
network analytic applications, with small variations.
Some applications are only interested in a subset of the
incoming packets. For example, a Port Scan Detection
application is only interested in TCP packets with SYN

or SYN-ACK flags active. In these cases, a barrier of
Filter operators follows the sources to select only the
matching tuples and discard all others, thus reducing
the load on the rest of the pipeline. Other applications
may use Window-based Operators instead of the basic
Maps used in Figure 2. Section 5 describes three rep-
resentative applications in which these differences are
at work. However, the FlowId operator is typically im-
plemented by all of them. This is because the FlowID
can be used as a key to partition the stream of tuples,

3

creating parallel paths in the pipeline immediately fol-
lowing the FlowID operator. This is possible whenever
the processing of one flow is independent of the other
flows, allowing the more CPU-intensive computations
to be spread on the available cores.

3. NIC-Accelerated Streaming Analytics

Smart Network Interface Cards (SmartNICs) repre-
sent a specialized class of devices that couples tradi-
tional network connectivity with programmable pro-
cessing capabilities. Unlike standard NICs, which pri-
marily handle basic packet processing tasks, SmartNICs
offload and accelerate complex network-related opera-
tions such as packet filtering, load balancing, encryp-
tion/decryption, and more, directly within the card it-
self. The integration of programmable capabilities em-
powers SmartNICs to substantially enhance network
performance, alleviate CPU overhead, and facilitate a
wide range of networking and security functions. Con-
sequently, they find optimal utility in data centers, cloud
computing environments, and other demanding high-
performance networking contexts.

Our primary objective here is to develop a versatile
offload methodology that remains agnostic to specific
hardware dependencies and circumvents the need for
proprietary mechanisms to communicate the offloaded
results back to the end host. Both of these requirements
naturally find their solution through the utilization of
extended Berkeley Packet Filters (eBPF) [23] and the
eXpress Data Path (XDP) [20].

In essence, eBPF programs function as software mod-
ules executed whenever the software reaches defined
software hooks. Within the networking domain, these
software hooks is mainly represented by the eXpress
Data Path (XDP). In the native mode, eBPF programs
operate within the kernel space of Linux hosts. Con-
versely, in the offloaded mode, these programs can
be executed directly on compatible hardware, such as
SmartNICs.

3.1. Netronome Agilio CX 2X40Gbps SmartNIC

One cost-effective and relatively popular SmartNIC
that offers eBPF support is the Netronome Agilio CX
2x40Gbps SmartNIC. The high-level architecture of this
SmartNIC is depicted in Figure 3.

At its core, this NIC is built around the NFP-4000
processor, featuring 60 Flow Processor Cores (FPCs)
with up to 8 cooperatively multithreaded threads per
core. The original eBPF hardware offload support was
introduced in kernel version 4.9 inside the Netronome

RX Path TX Path

XDP

FPCs
Offloaded

eBPF program

Offloaded
maps

Figure 3: The Netronome Agilio CX SmartNIC design with eBPF
hardware offload.

Flow Processor (NFP) driver, and subsequent driver
versions (after v4.16) also offer map offload support.
The upstreamed kernel driver facilitates the translation
of the kernel eBPF program into microcode, which can
then be transferred onto the SmartNIC using the NFP
eBPF Just-in-Time (JIT) compiler. Consequently, users
can effortlessly offload programs without necessitating
an in-depth understanding of microcode or the intrica-
cies of the NFP architecture. This streamlined eBPF-
based approach empowers users to harness the full ca-
pabilities of the SmartNIC with ease.

Inside the SmartNIC, eBPF programs are typically
executed on 50 of the overall 60 cores, with each core
running 4 threads. These flow processing cores employ
a RISC instruction set that is optimized for networking,
which closely resembles the eBPF bytecode. This con-
gruence ensures the feasibility of offloading [38]. How-
ever, it is essential to acknowledge that the single-thread
performance of these cores is notably lower than that of
the host.

Lastly, the device is equipped with high-performance
PCIe interfaces that facilitate high-speed data and
packet transfer between the host system and the NFP.

3.2. Challenges

3.2.1. Resource constraints
One of the primary challenges stems from the in-

herent resource constraints of SmartNICs in compari-
son to their host counterparts. The SmartNIC environ-
ment imposes stricter limitations, necessitating meticu-
lous attention to several stringent constraints during the
offloading process.
Program Size Restrictions The Netronome SmartNIC
imposes strict limitations on the size of XDP programs
and eBPF maps that can be effectively offloaded. This
is primarily due to the significantly limited memory re-
sources available on SmartNICs compared to host sys-
tems. Presently, each eBPF program offloaded onto the

4

SmartNIC can accommodate a maximum of approxi-
mately 8,000 instructions [27]. In contrast, eBPF/XDP
programs running on the host (software XDP) can sup-
port up to 1 million instructions.
Tail Call Mechanism To address program size limita-
tions, eBPF provides a mechanism known as tail call,
which enables transitions from one program to another
within the eBPF context, with each program being inde-
pendently verified. However, the Netronome SmartNIC
presently restricts the offloading of only one XDP pro-
gram [27], significantly limiting the effectiveness of this
optimization.
eBPF Map Size Constraints Additionally, the size of
eBPF maps faces limitations within the hardware envi-
ronment. Specifically, the hardware enforces a maxi-
mum limit of 64 bytes per entry, encompassing both the
key and value components. Furthermore, regardless of
the size of individual entries and the number of maps,
an overarching constraint is imposed on the total num-
ber of entries in the maps, capping it at approximately 3
million entries.

In the context of streaming algorithms, these limi-
tations demand careful consideration. As discussed in
Section 2, WindFlow orchestrates a graph of opera-
tors chained together to form the final application. Of-
floading all operators to the SmartNIC can result in a
complex program being deployed, quickly reaching the
maximum allowable number of instructions. Moreover,
streaming algorithms are designed for long-term exe-
cution, often involving metrics collection and advanced
calculations. Executing such operations entirely on the
SmartNIC may require more memory than is available
on the NIC or exceed the limit of maximum key/value
entries in the maps, especially with complex protocols
such as IPv6.

As detailed in Section 4, we address this challenge by
adopting a partial offloading model. In this approach,
only a portion of the computation, specifically tasks that
involve repetition and computationally intensive pro-
cesses like packet parsing and hash calculation, are of-
floaded onto the SmartNIC. The SmartNIC then pro-
vides packets and additional metadata to the userspace
pipeline, where the remaining processing and data col-
lection occur.

3.2.2. Feature constraints
In WindFlow, tuples traversing the processing graph

typically have timestamps attached. Depending on the
adopted notion of time, the timestamp attribute can ei-
ther be assigned by the framework or extracted from the
input itself (event time).

When offloading these operators to a SmartNIC, it
can be advantageous to leverage the timestamp attached
by the NIC to enhance performance. In the context of
eBPF, the bpf ktime get ns helper function2 can be
used to retrieve the time elapsed since system startup in
nanoseconds. This timestamp can then be attached to
the packet and used as ingress time in the WindFlow
pipeline. However, existing SmartNICs with eBPF of-
fload support have limited features that are currently
supported. This limitation encompasses instructions,
helper functions, and eBPF map types.

For instance, the Netronome SmartNIC does not
support per-core eBPF maps, which makes the pro-
cess of storing and retrieving eBPF maps informa-
tion from userspace not as efficient as using userspace
data structures. Moreover, it does not support the
bpf ktime get ns helper function, necessitating our
offloading mechanism to handle this case by providing
a software timestamp when it is not supported by the
hardware.

It is essential to note that recent kernel versions
(v6.3+) have introduced functionality to allow XDP
to access additional metadata provided by the spe-
cific driver [9]. As explained in Section 4, our pro-
posed offloading mechanism addresses this by exploit-
ing hardware-provided metadata when available.

3.2.3. Handling window-based operators
As mentioned in Section 2, among the various opera-

tors, WindFlow provides window-based operators, par-
ticularly useful for applications requiring periodic user-
defined computations over finite portions of the stream
(e.g., port scans [24], Slowloris Attacks [51]).

When offloading such operators to eBPF, triggering
specific computations at defined times can be challeng-
ing. The eBPF engine follows an event-based execu-
tion model, where packet receipt in the RX path of the
NIC triggers program execution. While recent kernels
(5.15+) support bpf timers [47], enabling the attach-
ment of timers to eBPF maps that can be triggered at
specific time intervals, this approach may not be viable
for completely offloading window-based operators for
at least two reasons: (i) none of the SmartNICs with
eBPF offload currently support bpf timers, and (ii)

2The eBPF subsystem employs a varying number of helper func-
tions to interact with other parts of the kernel subsystem. These helper
functions are a crucial part of the eBPF APIs, which are integral to the
security sandbox provided by the eBPF verifier. The verifier checks
the safety of eBPF programs, ensuring they can be safely injected into
the kernel. Therefore, calls to external functions are only permitted if
they are part of the eBPF APIs.

5

window-based operators within WindFlow may require
more complex data handling than what can be achieved
with timers attached to specific maps.

As detailed in Section 4, our partial offloading archi-
tecture keeps time-based analysis in userspace within
the WindFlow pipeline. It offloads only a part of the
computation that involves repetitive and computation-
ally intensive tasks, such as packet parsing and hash cal-
culation, to the eBPF hardware program. This approach
reduces overall computational overhead in the userspace
application and enhances overall performance.

4. Offloading WindFlow graph to Netronome

In this section, we present the architecture and details
of our approach for offloading a subset of the WindFlow
stream processing graph to Netronome SmartNICs, en-
hancing the efficiency of stream data processing.

Figure 4 provides an overview of the proposed offload
mechanism.

When a packet arrives inside the SmartNIC, it trig-
gers the execution of an offloaded eBPF program, as
depicted on the left side of Figure 4. This program
implements the offloaded operators, which form a sub-
set of the operators used in the userspace WindFlow
pipeline3. It then extracts necessary information and
generates tuples for each received packet, along with
hardware-specific metadata (e.g., hardware timestamps
or flow IDs) [9] for use within the application’s graph.

After the eBPF program’s execution, the tuples are
redirected to specific RX queues, selected by setting
the rx queue index on the hardware XDP context ob-
ject [40]. These queues are managed using the offloaded
eBPF indirect map, which is programmed using the
userspace BPF APIs.

On the userspace side, nethuns [4] sockets are al-
located to the hardware queue of the physical network
device, indexed based on each replica’s corresponding
index. The nethuns library provides a unified program-
ming abstraction that simplifies access and management
of network operations across various I/O frameworks,
including AF XDP, netmap, and Libpcap.

In the case of AF XDP, an additional XDP program is
loaded on the end-host kernel (not shown in Figure 4) to
redirect received tuples to the configured AF XDP socket,
seamlessly managed by nethuns.

3Although Figure 4 shows the offloaded operators as separate en-
tities in the eBPF engine of the SmartNIC, they are implemented as
a single XDP program, since Netronome does not support a cascade
of eBPF programs to be offloaded into the SmartNIC, as described in
Section 3.2.

Finally, the Sniffer object captures received tuples
from nethuns sockets and initiates the WindFlow
pipeline on the userspace side, where the remaining op-
erators are executed using information extracted in the
hardware pipeline.

4.1. Overview of offloaded operators
Source offload. The starting point for offloading is
the Source operator, where an offloaded eBPF program
parses the header of each incoming packet and con-
structs the required tuple for the monitoring applica-
tion. This enables parallel execution across the nu-
merous cores available on the Netronome card. The
constructed tuples are then forwarded to the user-space
pipeline for further processing.

The communication between the eBPF program and
the userland can occur in two ways: (i) through the con-
trol plane, using eBPF maps [8]; (ii) over the data path,
forwarding the newly crafted tuple as regular pack-
ets. We have chosen the second option for both per-
formance and generality reasons. Firstly, communica-
tion via eBPF maps is only efficient on a per-core basis,
which is not suitable for our setup since the Netronome
card does not support per-core maps. In fact, the large
number of cores in the SmartNIC would likely exceed
the number of cores on the host PC, leading to signif-
icant synchronization issues. Secondly, employing the
regular data path logically separates the offloaded pro-
cessing from the main computation graph.

The Source node in the user-space graph still initiates
the WindFlow pipeline, but now functions as an adapter,
receiving pre-formed tuples for delivery to subsequent
stages after proper type casting.
FlowID offload. To extend the offloading mechanism,
we also incorporated the computation of the FlowID
within the eBPF program, adding the result as an addi-
tional field in the packet-tuple. This approach maintains
core affinity with user-space graph computations. Many
WindFlow operators indeed use the key-by approach
to send all inputs having the same key attribute (e.g., a
specific field of the tuple) to the same replica. By com-
puting the FlowID within the eBPF program before the
tuple enters the user-space pipeline, we then establish
a direct connection between the Source and the subse-
quent operators, resulting in significant benefits in terms
of operation synchronization and cache locality.

Please note that, as shown in Figure 4, even when we
offload the Source and the FlowID to the SmartNIC,
the WindFlow pipeline still needs to be initiated in the
Source node. However, these nodes now function as
mere adapters that receive already formed tuples to be
delivered to the next stages after proper type casting.

6

NETHUNS

NETHUNS

NETHUNS

NETHUNS

OP1 OP2 OP3

Netronome SmartNIC

Offloaded Operators RX QUEUES SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

OP-N

OP-N

OP-N

OP-N

SINK

WINDFLOW Operators

AF_XDP NETMAP LIBPCAP

PACKET PARSED PACKET TUPLE
TUPLE

(+ HW METADATA) TUPLE TUPLE TUPLE

Figure 4: Architecture of proposed WindFlow offloaded mechanism. The SmartNIC hardware eBPF engine executes a subset of the WindFlow
operators, extracing tuples and hardware metadata from received packets. After the execution on the hardware pipeline, tuple are forwarded to the
WindFlow userspace graph using the nethuns [4] library, which supports different I/O framework such as AF XDP, netmap and Libpcap, where
the rest of streaming analysis is performed.

Map& Filter offload. As shown in Table 1, WindFlow
uses Map and Filter operators for one-to-one transfor-
mations and filtering of tuples, respectively. For trans-
formations, offloading is viable if the Map operator per-
forms stateless operations (i.e., transformations that do
not require storing data into an internal data structure to
be retrieved later by subsequent operators), that can be
implemented using the eBPF instruction set. However,
if transformations involve complex floating point opera-
tions or require SIMD instructions, they are deferred to
the userspace pipeline.

For stateful operations, although it would be possible
to store such information into eBPF maps and retrieve
them later by reading such maps from userspace, we
found it to be not as efficient as using userspace data
structure due to limitations in Netronome’s support for
per-core eBPF maps. As a result, such operations are
handled within userspace.

Regarding the Filter operators, offloading is feasi-
ble when supported by the eBPF instruction set and
available eBPF map types. The offloaded operator fil-
ters tuples based on predefined policies, returning the
XDP DROP action for discarded tuples, as opposed to the
default XDP PASS. This approach optimizes the offload-
ing of operators while considering their specific charac-
teristics and hardware constraints, resulting in efficient
stream data processing.

5. Use Cases

In this Section, we explore three practical use cases
that demonstrate the versatility and efficiency of our

PROCESSING PIPELINE

SINK

STATS

STATS

SINK

SINK

FLOWID

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SmartNIC Userspace

Figure 5: The flow meter application. In addition to the Source and
Sink operators, we employ two Map operators (FlowID and Stats) to
collect per-flow statistics.

offloading approach within the WindFlow framework.
These use cases showcase how offloading specific
stream processing tasks to Netronome SmartNICs can
greatly enhance the performance and effectiveness of
real-world applications.

5.1. Flow Meter

The Flow Meter application, inspired by [13], lever-
ages the WindFlow architecture and mechanisms pre-
viously discussed to continuously update and maintain
per-flow statistics, offering essential traffic analytics.
These statistics include per-flow packet and byte coun-
ters, the number of observed flows, per-protocol coun-
ters for packet and flow volumes, and more.

Figure 5 provides an overview of the application’s
processing flow. Each parallel processing pipeline starts
with one of the Source replicas, utilizing nethuns

7

PROCESSING PIPELINE

SINK

FILTER

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

FILTER

FILTER

FILTER

FLOWID

TRW

TRW

SINK

SINK

1 sec

SmartNIC Userspace

Figure 6: The Port Scan Detection application. It includes the Source
and Sink operators, a Filter operator for incoming TCP tuples, a Map
operator (FlowID) for tuple identification, and a KeyedWindow oper-
ator for implementing the Threshold Random Walk (TRW) algorithm.

sockets [4] for accelerated packet capture. The Source
operators perform three crucial tasks:

• Parsing the packet headers of interest

• Extracting tuples from the accessible channels

• Forwarding them to the next stage, which is the
FlowID operator

In the FlowID stage, a unique FlowID is computed
for each incoming tuple based on the canonical 5-tuple
<src IP, dst IP, src port, dst port, protocol>. This
FlowID serves as the key for distributing tuples among
the replicas of the subsequent stage, the Stats operator.

The Stats operator, implemented as a WindFlow
Map, continuously updates and maintains per-flow
statistics. Finally, the Sink operator serves as the end-
point for the tuple stream, allowing the accumulated
statistics to be exported or visualized for analysis.

In our offloaded architecture, the Source and FlowID
operators are implemented as eBPF/XDP programs run-
ning on the SmartNIC’s hardware eBPF engine, while
the Stats operator remains in userspace to maximize
performance.

5.2. Port Scan Detection

The Port Scan Detection application focuses on iden-
tifying suspicious network activity, specifically port
scanning attempts by malicious attackers. It employs
the Threshold Random Walk (TRW) algorithm, an on-
line detection algorithm that identifies malicious remote
hosts by modeling accesses to local IP addresses as a
random walk on one of two stochastic processes, cor-
responding respectively to the access patterns of benign
remote hosts and malicious ones [25].

Figure 6 illustrates the processing flow of this appli-
cation. Similar to the other applications, parallel pro-
cessing pipelines begin with the Source replicas, which

PROCESSING PIPELINE

SINK

FILTER

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

SOURCE

SN
IF

FE
R

FILTER

FILTER

FILTER

FLOWID

SYN
FLOOD

SYN
FLOOD

SINK

SINK

10 sec

SmartNIC Userspace

Figure 7: The SYN Flood Detection application. It includes the
Source and Sink operators, a Filter operator for incoming TCP tu-
ples, a Map operator (FlowID) for tuple identification, and a Keyed
Window operator for the SYN Flood detection algorithm.

parse headers of interest, including src IP, dst IP, and
TCP header information such as TCP flags and src/dst
port. In the subsequent Filter stage, packets with TCP
SYN or SYN-ACK flags are filtered since they are the fo-
cus of the application. The FlowID stage computes a
unique FlowID for each incoming tuple. For packets
with the SYN flag, FlowID is computed using the jhash
algorithm on <src IP, dst IP, dst port>, while for pack-
ets with SYN-ACK flags, it is computed on <dst IP, src
IP, src port>.

The Source, Filter, and FlowID operators are en-
tirely offloaded to the SmartNIC, and the final tuples are
forwarded using nethuns sockets to the remaining part
of the WindFlow pipeline in userspace.

Within the WindFlow pipeline, the TRW algorithm
runs inside a Keyed Window operator, scanning all re-
ceived tuples every second and generating alerts when
the number of connections exceeds a configured thresh-
old. Importantly, while the TRW component is not of-
floaded, it benefits from offloading as all necessary in-
formation has been extracted in the hardware pipeline
by the previous operators.

5.3. SYN Flood Detection

The SYN Flood Detection application serves the pur-
pose of identifying SYN flood attacks by monitoring and
counting the number of incomplete TCP handshakes
within a defined time interval [52]. In this context, an
incomplete TCP handshake is characterized by the pres-
ence of a SYN packet followed by a SYN-ACK packet,
each with corresponding sequence and acknowledge
numbers, but lacking the subsequent ACK packet to com-
plete the handshake.

Similar to previous applications, the processing
pipeline for SYN Flood Detection, as depicted in Fig-
ure 7, begins with the Source operator, responsible for
packet parsing and tuple creation. These tuples then

8

Offloaded
eBPF program

Netronome SmartNIC

Indirection
Map

Queue
#1

Queue
#2

Queue
#3

Queue
#4

Kernel

Userspace

XDP

nfp

nfp
netmap

NETHUNS

AF_XDP NETMAP

SRC SINK

Figure 8: Test environment setup.

pass through the Filter operator for further process-
ing. In the FlowID stage, a unique FlowID is computed
for each incoming tuple. To ensure consistency in flow
identification for bidirectional traffic, we employ the al-
gorithm described in [33]. The flow’s key is defined as:

key = {min(I pS rc, I pDest),max(I pS rc, I pDest), Proto,

min(PortS rc.PortDest),max(PortS rc, PortDest)}
(1)

This key is then hashed using the jhash algorithm to
generate the unique FlowID. Additionally, two flags, ip
reverse (ipRev) and port reverse (portRev), are added
to the generated tuple to indicate the direction of the
flow correctly.

On the userspace side, the SYN Flood detection al-
gorithm is implemented within a Keyed Window oper-
ator. This algorithm counts incomplete handshakes ev-
ery 10 seconds and compares the count to a user-defined
threshold to generate alerts.

6. Experimental evaluation

This section presents a series of experiments de-
signed to assess the impact of our offloading technique.
Our testbed comprises two identical machines featur-
ing Xeon E5-1660 processors with 8 cores, operating
at 3.0 GHz, equipped with 20 MiB of L3 cache and
32 GiB of DDR4 2133 MT/s DRAM. One machine
is equipped with a Netronome Agilio CX 2x40Gbps
SmartNIC, while the other features a 40 Gbps Intel

XL710 NIC. We’ve disabled frequency scaling and hy-
perthreading since all WindFlow experiments utilize
non-blocking queues, ensuring that all active cores run
at maximum utilization. Both servers run Ubuntu 22.04
and kernel v5.19.0.

For the tests with the offload we configure an eBPF
offloaded map (called indirection table) to redirect
flows to a set of Receive Side Scaling (RSS) queues de-
pending on the experiment, forcing the applications to
be executed on a specific set of CPU cores.

To generate traffic and report throughput results, we
employ pktgen [10] with DPDK v20.11.0. Addition-
ally, we use the DPDK burst replay tool [44] to replay
various packet traces. Unless stated otherwise, we re-
port the average throughput across five runs of each
benchmark, measured at the minimum packet size of 64
bytes. Each benchmark involves measuring the through-
put of the streaming application using two distinct I/O
frameworks: AF XDP [7] and netmap [45]. Our ap-
proach relies on the nethuns [4] library, which ab-
stracts the underlying I/O framework, ensuring that the
userspace application remains unaltered.

When using AF XDP, an additional eBPF/XDP pro-
gram is loaded onto the host kernel. Its purpose is to
direct frames to specific AF XDP sockets [7]. Through-
out our tests, we enable the XDP ZEROCOPY flag, which
has been recently introduced to the Netronome nfp

driver [21]. This flag is important because it allows
userspace applications using the AF XDP sockets to re-
ceive and transmit packets without any copies from ker-
nel to userspace. No modifications to the applications
are needed, but the NIC driver needs to be modified
to support zero-copy. In contrast, netmap does not ne-
cessitate such modifications. However, it does require
changes to the driver to support the netmap memory
model, which can subsequently be loaded as a kernel
module. To perform out tests, we have accordingly
modified the nfp driver to include netmap support4.

6.1. Maximum throughput
To gauge the upper bounds of throughput, we start by

measuring the maximum incoming throughput achiev-
able using the Netronome SmartNIC, employing both
the netmap and the AF XDP frameworks.

In our test scenarios, we generate traffic from the In-
tel XL710 NIC, consisting of 32 flows of minimally-
sized UDP packets, achieving the highest attainable ag-
gregate packet rate of approximately 42Mpps within our

4https://github.com/luigirizzo/netmap/tree/nfp.
Only the RX part of the driver is currently implemented. This is
sufficient for the purposes of the paper.

9

https://github.com/luigirizzo/netmap/tree/nfp

w/o offload with offload0

10

20

30

40

Th
ro

ug
hp

ut
 (

M
pp

s) HW limit netmap
AF_XDP

Figure 9: Baseline performance comparison of netmap and AF XDP
when using all available 8 hardware RX queues. When loading the
eBPF program on the SmartNIC the throughput slightly decrease to
∼30Mpps for netmap and 27Mpps for AF XDP.

testbed. It’s crucial to note that this rate serves as a hard-
ware bottleneck, a characteristic acknowledged by Intel
in their documentation [6, 11].

Figure 9 shows the results obtained from these base-
line tests. When we employ the netmap pkt-gen

receiver in busy-waiting mode, we observe a maxi-
mum incoming throughput of 34.7 Mpps, which re-
mains the same regardless of the number of hardware
RX queues employed. On the other hand, when run-
ning the AF XDP xdpsock sample application [43], we
achieve a maximum incoming throughput of 24.7 Mpps
with a single hardware RX queue, which increases to
32.2 Mpps when all available hardware RX queues are
used. These throughput numbers align with those re-
ported in previous research [42] and the nethuns doc-
umentation [4].

The introduction of the eBPF tuple-parsing program
into the NIC introduces some overhead. The maximum
throughput for netmap drops to approximately 30 Mpps,
while for AF XDP, it drops to 27 Mpps. We identified
that a significant portion of this overhead is attributed
to the hash function calculations performed in the of-
floaded program. This hash function calculation is used
both for the FlowID offload (as explained in §4.1) and
for directing the flow to the appropriate RX queue using
the indirection map.

Despite the reduction in achievable maximum
throughput due to the offloaded program, the subse-
quent sections will highlight the substantial benefits of
offloading for specific use cases.

6.2. Raw tuple-generation test

Here we describe a series of tests aimed at under-
standing the effects of the offloading for the various use
cases presented above. We start from the simplest con-
ceivable WindFlow application: an empty pipeline ap-
plication consisting of just the two mandatory operators
(a Source and a Sink), each one consuming a core per

1 2 3 4
of src/sink pairs

0

10

20

30

Th
ro

ug
hp

ut
 (M

pp
s) Netmap Baseline

AF_XDP Baseline

Empty Pipeline (Without Batching)

no batch, no offload
no batch, offload

Figure 10: Throughput of the empty pipeline application with no
batching. Results are the same for both netmap and AF XDP.

1 2 3 4 5 6 7 8
of src + sink pairs

0

10

20

30

Th
ro

ug
hp

ut
 (M

pp
s) Netmap Baseline

AF_XDP Baseline

Empty Pipeline (With Chaining)

netmap, no offload
netmap, offload
af_xdp, no offload
af_xdp, offload

Figure 11: Throughput of the empty pipeline application with chain-
ing. Results are the same for both netmap and AF XDP.

replica. In the non-offloaded case, the Source node re-
ceives the incoming packets and creates the correspond-
ing tuples; in the offloaded case, the Source receives
the tuples directly from the NIC and forwards them by
pointer, without ever touching them. In both cases the
Sink recycles the tuples’ memory back to the Source.

Figure 10 shows the throughput of this application
with and without offloading. We can see that, even when
using all the 8 available cores (4 for the Source and 4
for the Sink), the application can process only less than
half of the maximum achievable throughput. Offload-
ing the source operator in the Netronome can slightly
improve the packet rate, signaling that tuple creation
may contribute to the bottle-neck. However, a much
larger source of overhead comes from the communi-
cation overhead between the two operators running in
two separate cores. This bottleneck can be removed in
a couple of ways in the WindFlow framework: (i) by
forwarding tuples in batches to amortize the communi-
cation cost, or (ii) by chaining the operators so that they
are run one after the other in the same thread (and there-
fore the same core).

Figure 11 shows the effect of enabling operator chain-
ing. We can see that chaining is also effective at remov-
ing the communication overhead. However, it is not
available for all possible pairs of operators and, if the
chained operators are close to saturation, it may even
have a negative impact. Note that the non-offloaded case
performs better than the offloaded one for 8 sources.

10

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

pp
s)

Netmap Baseline

Empty Pipeline (Netmap)
batch, no offload
batch, offload
chain, no offload
chain, offload

(a)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

pp
s)

Netmap Baseline

Flow Counter (Netmap)
batch, no offload
batch, offload
chain, no offload
chain, offload

(b)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

pp
s)

Netmap Baseline

Port Scan (Netmap)
batch, no offload
batch, offload
chain, no offload
chain, offload

(c)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

pp
s)

Netmap Baseline

SYN Flood (Netmap)
batch, no offload
batch, offload
chain, no offload
chain, offload

(d)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

pp
s)

AF_XDP Baseline

Empty Pipeline (AF_XDP)
batch, no offload
batch, offload
chain, no offload
chain, offload

(e)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

pp
s)

AF_XDP Baseline

Flow Counter (AF_XDP)
batch, no offload
batch, offload
chain, no offload
chain, offload

(f)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

pp
s)

AF_XDP Baseline

Port Scan (AF_XDP)
batch, no offload
batch, offload
chain, no offload
chain, offload

(g)

1 2 3 4
of src/sink pairs

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

pp
s)

AF_XDP Baseline

SYN Flood (AF_XDP)
batch, no offload
batch, offload
chain, no offload
chain, offload

(h)

Figure 12: Throughput in millions of packets per second (Mpps) for four distinct WindFlow applications. For each application, we present the
throughput results when using both the netmap and AF XDP packet I/O frameworks. Additionally, we examine the impact of enabling WindFlow’s
batching and chaining features, both with and without our proposed offloading mechanism.

This is a direct effect of the different hardware limits
described in Section 6.1 above.

Finally, figures 12a and 12e shows how the through-
put, for both netmap and AF XDP, changes when batch-
ing is enabled. Now the effect of source-offloading is
much more visible and we get very close to the baseline
limit with 3 sources.

6.3. Use cases

In this final series of experiments, we evaluate the
throughput of the applications introduced in Section 5,
considering both complete and partial operator of-
floading strategies. We present results for both the
netmap and AF XDP frameworks, with either batch-
ing or chaining enabled. Based on the findings in Sec-
tion 6.2, we focus on reporting results with batching en-
abled.
Flow Meter. The Flow Meter application comprises
a pipeline of four operators, except in the offloaded
scenario where only three operators are used. This is
because the FlowID operator runs entirely within the
Netronome. Each operator can be assigned an indepen-
dent degree of parallelism. We denote the degrees of
parallelism for the four operators as n-m-p-q, in order.
In the offloaded case we use n-m-p. Since each operator
instance uses a full core, we must have n+m+ p+q ≤ 8
for the non offloaded cases, and n+m+ p ≤ 8 in the of-
floaded one, to avoid inefficient time-sliced execution.

Figures 12b and 12f illustrate the results. Offload-
ing tuple creation significantly alleviates the Source op-
erator’s workload. By offloading tuple generation, the
Source no longer needs to process every incoming tu-
ple, mitigating the potential for cache misses. By of-
floading both the Source and FlowID operators, we
achieve throughput close to the baseline for both netmap
and AF XDP when batching is enabled. This corre-
sponds to a nearly 1.5× increase in throughput com-
pared to the non-offloaded case.
Port Scan & Syn Flood. These applications introduce
the use of another operator, the KeyedWindow operator,
as part of the WindFlow streaming processing pipeline.
However, complete offloading of this operator in the
Netronome card is not possible due to current hardware
limitations. In both applications, to reduce the process-
ing load on the userspace application, we completely of-
fload the Source, FlowID and Filter operators. Partial
offloading of the window-based operator involves pars-
ing and calculating the SYN and SYN-ACK for a given
flow and passing this information in the newly created
tuple. This tuple is then received by the userspace oper-
ator without the need for redundant calculations.

Figures 12c,12g,12d, and 12h exhibit similar trends.
The Port Scan application shows slightly lower perfor-
mance than the Flow Meter due to the greater com-
plexity of the hardware offloaded program, which in-
volves more intricate operations. Nonetheless, the per-
formance improvement from offloading is evident, re-

11

sulting in approximately a 25% improvement when us-
ing three Source operators.

Similarly, the Syn Flood application demonstrates a
comparable pattern, with a further decrease in perfor-
mance due to the execution of a more complex algo-
rithm associated with key ordering used in the Smart-
NIC to generate a single flow key for flows from both
directions. However, the benefits of hardware offload-
ing are clear, yielding improvements ranging from 10%
to approximately 45% (netmap, one Source/Sink).

7. Related Work

The cooperation between hardware and software for
traffic analysis is certainly not new and many solutions
have been proposed since the time of network proces-
sors [15, 49]. In particular, some of the ideas proposed
here could be found in [15], where in a different sce-
nario the Intel IXP2400 was used as the first stage of
a monitoring system to capture and strip the relevant
headers from network packets. In this paper, we focus
on SmartNICs, which in turn have already been pro-
posed for offloading traffic processing (e.g., in [14, 35]).
However, to the best of our knowledge, very little has
been done for offloading stream processing operations.
More generally, there is still relatively little work fo-
cusing on performance acceleration on heterogeneous
systems.

A notable (and nearly unique) attempt to combine
the expressiveness of DaSP system with hardware class
performance for stream processing in the network do-
main is Sonata [18, 19]. Sonata stands out as a hybrid
framework that combines a P4 programmable switch
with stream processors. The workflow begins with the
submission of monitoring queries through a declarative
interface, which are then distributed between a stream
processor (implemented with Spark Streaming [3]) and
a programmable switch. By offloading a substantial
number of queries directly to the switch, Sonata effec-
tively prevents overwhelming the stream processor and
enables significantly high packet rates.

Instead, more has been done with GPUs. G-Storm [5]
served as a GPU-enabled parallel system based on
Storm. It harnessed the vast computing power of
GPUs for high-throughput online stream data process-
ing. Saber [28] implemented a hybrid high-performance
relational stream processing engine for CPUs and GPG-
PUs. Designed to execute window-based streaming
SQL queries in a data-parallel fashion, Saber utilized all
available CPU and GPGPU cores. F-Storm [50] stood
out as a general-purpose distributed stream processing

system for Edge servers, leveraging on-board PCIe-
based FPGAs for acceleration. The authors demon-
strated that, compared to Storm, F-Storm significantly
improved the speed of algebraic computations and grep
applications while reducing latency.

FineStream [53, 54] represented a stream process-
ing engine based on a CPU-GPU integrated architec-
ture, targeting the efficient handling of multiple queries
in both static and dynamic streams. Recently, Liu et
al. introduced FineQuery [30], a fine-grained query
processing engine capable of efficient query process-
ing on CPU-GPU integrated edge devices. FineQuery
maximizes the advantages of edge device architectural
features and query characteristics through fine-grained
workload scheduling between the CPU and the GPU.

8. Conclusions

In this paper we show that SmartNICs are an afford-
able solution to accelerate standard network monitoring
analysis tasks. We started from WindFlow, a state-of-
the-art framework for stream processing, and demon-
strated that it can be repurposed to analyze network
data. We then implemented a custom logic to be run on
a standard commodity SmartNIC, the Netronome Ag-
ilio CX, that partially offload the compute required by
WindFlow.

To ensure the generality of our approach we devel-
oped the NIC logic in eBPF so that it can be ported to
any NIC or hardware accelerator supporting this pro-
gramming paradigm. Finally, we implemented a num-
ber of traffic analysis use-cases: (1) flow metering; (2)
port scan detection; and (3) SYN flood attack detection.
We show that our approach can ingest and analyze up to
40% more traffic compared to a pure software approach.

References

[1] Apache, 2014. Storm. [Online]. Available: https://

storm.apache.org/. Accessed: October 25, 2023.
[2] Apache, 2015a. Flink. [Online]. Available: https://

flink.apache.org/. Accessed: October 25, 2023.
[3] Apache, 2015b. Spark Streaming. [Online]. Available: https:

//spark.apache.org/streaming/. Accessed: October 25,
2023.

[4] Bonelli, N., Vigna, F.D., Fais, A., Lettieri, G., Pro-
cissi, G., 2022. Programming socket-independent net-
work functions with nethuns. SIGCOMM Comput. Com-
mun. Rev. 52, 35–48. URL: https://doi.org/10.1145/
3544912.3544917, doi:10.1145/3544912.3544917.

[5] Chen, Z., Xu, J., Tang, J., Kwiat, K.A., Kamhoua, C.A.,
Wang, C., 2018. Gpu-accelerated high-throughput online stream
data processing. IEEE Transactions on Big Data 4, 191–202.
doi:10.1109/TBDATA.2016.2616116.

12

https://storm.apache.org/
https://storm.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://doi.org/10.1145/3544912.3544917
https://doi.org/10.1145/3544912.3544917
http://dx.doi.org/10.1145/3544912.3544917
http://dx.doi.org/10.1109/TBDATA.2016.2616116

[6] Corporation, I., 2014. Intel xl710 controller brief. [Online].
Available: https://lafibre.info/images/materiel/
201408 intel xl710 controller brief.pdf. Accessed:
October 25, 2023.

[7] Documentation, T.L.K., 2023a. AF XDP. [Online]. Available:
https://www.kernel.org/doc/html/next/networking/
af xdp.html. Accessed: October 25, 2023.

[8] Documentation, T.L.K., 2023b. BPF Maps. [Online]. Avail-
able: https://www.kernel.org/doc/html/v5.18/bpf/
maps.html. Accessed: October 25, 2023.

[9] Documentation, T.L.K., 2023c. XDP RX Metadata. [On-
line]. Available: https://docs.kernel.org/networking/
xdp-rx-metadata.html. Accessed: October 25, 2023.

[10] DPDK, 2018. Pktgen Traffic Generator Using DPDK. [Online].
Available: http://dpdk.org/git/apps/pktgen-dpdk. Ac-
cessed: October 25, 2023.

[11] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., Carle,
G., 2015. Moongen: A scriptable high-speed packet genera-
tor, in: Proceedings of the 2015 Internet Measurement Con-
ference, Association for Computing Machinery, New York,
NY, USA. p. 275–287. URL: https://doi.org/10.1145/
2815675.2815692, doi:10.1145/2815675.2815692.

[12] Fais, A., Antichi, G., Giordano, S., Lettieri, G., Procissi,
G., 2022. Mind the cost of telemetry data analysis, in:
Proceedings of the SIGCOMM ’22 Poster and Demo Ses-
sions, Association for Computing Machinery, New York,
NY, USA. p. 22–24. URL: https://doi.org/10.1145/
3546037.3546052, doi:10.1145/3546037.3546052.

[13] Fais, A., Lettieri, G., Procissi, G., Giordano, S.,
2021. Towards scalable and expressive stream packet
processing, in: IEEE Global Communications Con-
ference, GLOBECOM 2021, Madrid, Spain, De-
cember 7-11, 2021, IEEE. pp. 1–6. URL: https:

//doi.org/10.1109/GLOBECOM46510.2021.9685436,
doi:10.1109/GLOBECOM46510.2021.9685436.

[14] Feng, Y., Panda, S., Kulkarni, S.G., Ramakrishnan, K.K.,
Duffield, N., 2020. A smartnic-accelerated monitoring plat-
form for in-band network telemetry, in: 2020 IEEE International
Symposium on Local and Metropolitan Area Networks (LAN-
MAN, pp. 1–6. doi:10.1109/LANMAN49260.2020.9153279.

[15] Ficara, D., Giordano, S., Oppedisano, F., Procissi, G., Vi-
tucci, F., 2008. A cooperative pc/network-processor archi-
tecture for multi gigabit traffic analysis, in: 2008 4th Inter-
national Telecommunication Networking Workshop on QoS
in Multiservice IP Networks, pp. 123–128. doi:10.1109/
ITNEWS.2008.4488141.

[16] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh,
A., Andrewartha, M., Angepat, H., Bhanu, V., Caulfield, A.,
Chung, E., Chandrappa, H.K., Chaturmohta, S., Humphrey, M.,
Lavier, J., Lam, N., Liu, F., Ovtcharov, K., Padhye, J., Popuri,
G., Raindel, S., Sapre, T., Shaw, M., Silva, G., Sivakumar, M.,
Srivastava, N., Verma, A., Zuhair, Q., Bansal, D., Burger, D.,
Vaid, K., Maltz, D.A., Greenberg, A., 2018. Azure accelerated
networking: SmartNICs in the public cloud, in: 15th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 18), USENIX Association, Renton, WA. pp. 51–
66. URL: https://www.usenix.org/conference/nsdi18/
presentation/firestone.

[17] Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz,
D., Liu, Z., Wang, V., Pang, B., Chen, H., Lin, Z.W., Kurien,
V., 2015. Pingmesh: A Large-Scale System for Data Cen-
ter Network Latency Measurement and Analysis, in: Special
Interest Group on Data Communication (SIGCOMM), ACM.
doi:10.1145/2785956.2787496.

[18] Gupta, A., et al., 2016. Network Monitoring as a Stream-

ing Analytics Problem, in: 15th ACM Workshop on HotNets
’16, ACM. p. 106–112. URL: https://doi.org/10.1145/
3005745.3005748, doi:10.1145/3005745.3005748.

[19] Gupta, A., et al., 2018. Sonata: Query-Driven Streaming
Network Telemetry, in: Proceedings of the 2018 Con-
ference of the ACM SIGCOMM ’18, ACM. p. 357–371.
URL: https://doi.org/10.1145/3230543.3230555,
doi:10.1145/3230543.3230555.

[20] Høiland-Jørgensen, T., Brouer, J.D., Borkmann, D., Fastabend,
J., Herbert, T., Ahern, D., Miller, D., 2018. The
express data path: Fast programmable packet processing
in the operating system kernel, in: Proc. of CoNEXT
’18, Association for Computing Machinery, New York,
NY, USA. p. 54–66. URL: https://doi.org/10.1145/
3281411.3281443, doi:10.1145/3281411.3281443.

[21] Horman, S., 2022. Add AF XDP zero-copy sup-
port for NFP. [Online]. Available: https://

lore.kernel.org/netdev/20220304102214.25903-1-
simon.horman@corigine.com/. Accessed: October 25, 2023.

[22] Intel, 2020. In-band Network Telemetry Detects Net-
work Performance Issues. [White Paper]. Available:
https://builders.intel.com/docs/networkbuilders/
in-band-network-telemetry-detects-network-

performance-issues.pdf. Accessed: October 25, 2023.
[23] IO Visor Project, 2023. eBPF - Technology. [Online]. Avail-

able: https://www.iovisor.org/technology/ebpf. Ac-
cessed: October 25, 2023.

[24] Jung, J., Paxson, V., Berger, A., Balakrishnan, H., 2004a. Fast
portscan detection using sequential hypothesis testing, in: IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004,
pp. 211–225. doi:10.1109/SECPRI.2004.1301325.

[25] Jung, J., Paxson, V., Berger, A., Balakrishnan, H., 2004b. Fast
portscan detection using sequential hypothesis testing, in: IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004,
pp. 211–225. doi:10.1109/SECPRI.2004.1301325.

[26] Khandelwal, A., Agarwal, R., Stoica, I., 2019. Confluo: Dis-
tributed Monitoring and Diagnosis Stack for High-Speed Net-
works, in: Networked Systems Design and Implementation
(NSDI), USENIX.

[27] Kicinski, J., Viljoen, N., 2018. Xdp hardware offload: Current
work, debugging and edge cases. URl: https://legacy. netdev-
conf. info/2.2/papers/viljoen-xdpoffload-talk. pdf .

[28] Koliousis, A., Weidlich, M., Castro Fernandez, R., Wolf, A.L.,
Costa, P., Pietzuch, P., 2016. Saber: Window-based hybrid
stream processing for heterogeneous architectures, in: Pro-
ceedings of the 2016 International Conference on Management
of Data, Association for Computing Machinery, New York,
NY, USA. p. 555–569. URL: https://doi.org/10.1145/
2882903.2882906, doi:10.1145/2882903.2882906.

[29] Li, Y., Miao, R., Kim, C., Yu, M., 2016. FlowRadar: A Better
NetFlow for Data Centers, in: Networked Systems Design and
Implementation (NSDI), USENIX.

[30] Liu, J., Zhang, F., Li, H., Wang, D., Wan, W., Fang, X., Zhai, J.,
Du, X., 2022. Exploring query processing on cpu-gpu integrated
edge device. IEEE Transactions on Parallel and Distributed Sys-
tems 33, 4057–4070. doi:10.1109/TPDS.2022.3177811.

[31] Mencagli, G., Torquati, M., Cardaci, A., Fais, A., Rinaldi,
L., Danelutto, M., 2021. WindFlow: High-Speed Continuous
Stream Processing with Parallel Building Blocks, in: Transac-
tions on Parallel and Distributed Systems (TPDS), Volume: 32,
Issue: 11, IEEE. doi:10.1109/TPDS.2021.3073970.

[32] Miano, S., Bertone, M., Risso, F., Bernal, M.V., Lu, Y., Pi,
J., Shaikh, A., 2019a. A service-agnostic software framework
for fast and efficient in-kernel network services, in: Symposium
on Architectures for Networking and Communications Systems

13

https://lafibre.info/images/materiel/201408_intel_xl710_controller_brief.pdf
https://lafibre.info/images/materiel/201408_intel_xl710_controller_brief.pdf
https://www.kernel.org/doc/html/next/networking/af_xdp.html
https://www.kernel.org/doc/html/next/networking/af_xdp.html
https://www.kernel.org/doc/html/v5.18/bpf/maps.html
https://www.kernel.org/doc/html/v5.18/bpf/maps.html
https://docs.kernel.org/networking/xdp-rx-metadata.html
https://docs.kernel.org/networking/xdp-rx-metadata.html
http://dpdk.org/git/apps/pktgen-dpdk
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
http://dx.doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/3546037.3546052
https://doi.org/10.1145/3546037.3546052
http://dx.doi.org/10.1145/3546037.3546052
https://doi.org/10.1109/GLOBECOM46510.2021.9685436
https://doi.org/10.1109/GLOBECOM46510.2021.9685436
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685436
http://dx.doi.org/10.1109/LANMAN49260.2020.9153279
http://dx.doi.org/10.1109/ITNEWS.2008.4488141
http://dx.doi.org/10.1109/ITNEWS.2008.4488141
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
http://dx.doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/3005745.3005748
https://doi.org/10.1145/3005745.3005748
http://dx.doi.org/10.1145/3005745.3005748
https://doi.org/10.1145/3230543.3230555
http://dx.doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
http://dx.doi.org/10.1145/3281411.3281443
https://lore.kernel.org/netdev/20220304102214.25903-1-simon.horman@corigine.com/
https://lore.kernel.org/netdev/20220304102214.25903-1-simon.horman@corigine.com/
https://lore.kernel.org/netdev/20220304102214.25903-1-simon.horman@corigine.com/
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://www.iovisor.org/technology/ebpf
http://dx.doi.org/10.1109/SECPRI.2004.1301325
http://dx.doi.org/10.1109/SECPRI.2004.1301325
https://doi.org/10.1145/2882903.2882906
https://doi.org/10.1145/2882903.2882906
http://dx.doi.org/10.1145/2882903.2882906
http://dx.doi.org/10.1109/TPDS.2022.3177811
http://dx.doi.org/10.1109/TPDS.2021.3073970

(ANCS), IEEE. doi:10.1109/ancs.2019.8901880.
[33] Miano, S., Bertrone, M., Risso, F., Bernal, M.V., Lu, Y.,

Pi, J., 2019b. Securing linux with a faster and scal-
able iptables. SIGCOMM Comput. Commun. Rev. 49,
2–17. URL: https://doi.org/10.1145/3371927.3371929,
doi:10.1145/3371927.3371929.

[34] Miano, S., Chen, X., Basat, R.B., Antichi, G., 2023. Fast in-
kernel traffic sketching in ebpf. SIGCOMM Comput. Com-
mun. Rev. 53, 3–13. URL: https://doi.org/10.1145/
3594255.3594256, doi:10.1145/3594255.3594256.

[35] Miano, S., Doriguzzi-Corin, R., Risso, F., Siracusa, D.,
Sommese, R., 2019c. Introducing smartnics in server-based data
plane processing: The ddos mitigation use case. IEEE Access
7, 107161–107170. doi:10.1109/access.2019.2933491.

[36] Miano, S., Sanaee, A., Risso, F., Rétvári, G., Antichi, G., 2022.
Domain specific run time optimization for software data planes,
in: Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems, Association for Computing Machinery, New York,
NY, USA. p. 1148–1164. URL: https://doi.org/10.1145/
3503222.3507769, doi:10.1145/3503222.3507769.

[37] Narayana, S., Sivaraman, A., Nathan, V., Goyal, P., Arun,
V., Alizadeh, M., Jeyakumar, V., Kim, C., 2017. Language-
Directed Hardware Design for Network Performance Monitor-
ing, in: Special Interest Group on Data Communication (SIG-
COMM), ACM. doi:10.1145/3098822.3098829.

[38] Netronome, 2018. eBPF Offload Getting
Started Guide. [Online]. Available: https:

//www.netronome.com/media/documents/
UG Getting Started with eBPF Offload.pdf. Accessed:
October 25, 2023.

[39] Netronome, 2020. Agilio CX 2x40GbE. [Online]. Avail-
able: https://www.netronome.com/media/documents/
PB Agilio CX 2x40GbE-7-20.pdf. Accessed: October 25,
2023.

[40] Netronome, 2023. Programmable RSS. GitHub
repository. URL: [Online].Available:https:
//github.com/Netronome/bpf-samples/tree/master/
programmable rss.

[41] Parola, F., Miano, S., Risso, F., 2021. Providing telco-oriented
network services with ebpf: the case for a 5g mobile gateway, in:
International Conference on Network Softwarization (NetSoft),
IEEE. doi:10.1109/netsoft51509.2021.9492571.

[42] Parola, F., Procopio, R., Querio, R., Risso, F., 2023.
Comparing user space and in-kernel packet processing
for edge data centers. SIGCOMM Comput. Commun.
Rev. 53, 14–29. URL: https://doi.org/10.1145/
3594255.3594257, doi:10.1145/3594255.3594257.

[43] Project, X., 2023. AF XDP-example in bpf-examples. [On-
line]. Available: https://github.com/xdp-project/bpf-
examples/tree/master/AF XDP-example. Accessed: Oc-
tober 25, 2023.

[44] Ribas, J., 2019. DPDK burst replay tool. [Online]. Avail-
able: https://github.com/FraudBuster/dpdk-burst-
replay. Accessed: October 25, 2023.

[45] Rizzo, L., 2012. Netmap: a novel framework for fast packet
i/o, in: Proc. of USENIX ATC 2012, USENIX Association. pp.
1–12. doi:10.1109/infcom.2012.6195638.

[46] Silicon Valley Business Journal, 2023. Intel halts de-
velopment of Tofino switch chips. [Online]. Available:
https://www.bizjournals.com/sanjose/news/2023/
01/26/intel-halts-development-of-tofino-switch-

chips.html. Accessed: October 25, 2023.
[47] Starovoitov, A., 2021. bpf: Introduce bpf

timers. [Online]. Available: https://

lore.kernel.org/bpf/20210715005417.78572-4-
alexei.starovoitov@gmail.com/. Accessed: October
25, 2023.

[48] Van Tu, N., Hyun, J., Kim, G.Y., Yoo, J.H., Hong, J.W.K., 2018.
INTCollector: A High-performance Collector for In-band Net-
work Telemetry, in: Conference on Network and Service Man-
agement (CNSM), IEEE.

[49] Wolf, T., Ramaswamy, R., Bunga, S., Yang, N., 2006. An archi-
tecture for distributed real-time passive network measurement,
in: 14th IEEE International Symposium on Modeling, Analysis,
and Simulation, pp. 335–344. doi:10.1109/MASCOTS.2006.11.

[50] Wu, S., Hu, D., Ibrahim, S., Jin, H., Xiao, J., Chen, F., Liu,
H., 2019. When fpga-accelerator meets stream data process-
ing in the edge, in: 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pp. 1818–1829.
doi:10.1109/ICDCS.2019.00180.

[51] Yuan, Y., Lin, D., Mishra, A., Marwaha, S., Alur,
R., Loo, B.T., 2017a. Quantitative network monitor-
ing with netqre, in: Proceedings of the Conference of
the ACM Special Interest Group on Data Communica-
tion, Association for Computing Machinery, New York,
NY, USA. p. 99–112. URL: https://doi.org/10.1145/
3098822.3098830, doi:10.1145/3098822.3098830.

[52] Yuan, Y., Lin, D., Mishra, A., Marwaha, S., Alur,
R., Loo, B.T., 2017b. Quantitative network monitor-
ing with netqre, in: Proceedings of the Conference of
the ACM Special Interest Group on Data Communica-
tion, Association for Computing Machinery, New York,
NY, USA. p. 99–112. URL: https://doi.org/10.1145/
3098822.3098830, doi:10.1145/3098822.3098830.

[53] Zhang, F., Yang, L., Zhang, S., He, B., Lu, W., Du, X., 2020.
FineStream: Fine-Grained Window-Based stream processing
on CPU-GPU integrated architectures, in: 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), USENIX As-
sociation. pp. 633–647. URL: https://www.usenix.org/
conference/atc20/presentation/zhang-feng.

[54] Zhang, F., Zhang, C., Yang, L., Zhang, S., He, B., Lu,
W., Du, X., 2021. Fine-grained multi-query stream process-
ing on integrated architectures. IEEE Transactions on Par-
allel and Distributed Systems 32, 2303–2320. doi:10.1109/
TPDS.2021.3066407.

[55] Zhou, Y., Sun, C., Liu, H.H., Miao, R., Bai, S., Li, B., Zheng, Z.,
Zhu, L., Shen, Z., Xi, Y., Zhang, P., Cai, D., Zhang, M., Xu, M.,
2020. Flow Event Telemetry on Programmable Data Plane, in:
Special Interest Group on Data Communication (SIGCOMM),
ACM. doi:10.1145/3387514.3406214.

14

http://dx.doi.org/10.1109/ancs.2019.8901880
https://doi.org/10.1145/3371927.3371929
http://dx.doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3594255.3594256
https://doi.org/10.1145/3594255.3594256
http://dx.doi.org/10.1145/3594255.3594256
http://dx.doi.org/10.1109/access.2019.2933491
https://doi.org/10.1145/3503222.3507769
https://doi.org/10.1145/3503222.3507769
http://dx.doi.org/10.1145/3503222.3507769
http://dx.doi.org/10.1145/3098822.3098829
https://www.netronome.com/media/documents/UG_Getting_Started_with_eBPF_Offload.pdf
https://www.netronome.com/media/documents/UG_Getting_Started_with_eBPF_Offload.pdf
https://www.netronome.com/media/documents/UG_Getting_Started_with_eBPF_Offload.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x40GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x40GbE-7-20.pdf
[Online]. Available: https://github.com/Netronome/bpf-samples/tree/master/programmable_rss
[Online]. Available: https://github.com/Netronome/bpf-samples/tree/master/programmable_rss
[Online]. Available: https://github.com/Netronome/bpf-samples/tree/master/programmable_rss
http://dx.doi.org/10.1109/netsoft51509.2021.9492571
https://doi.org/10.1145/3594255.3594257
https://doi.org/10.1145/3594255.3594257
http://dx.doi.org/10.1145/3594255.3594257
https://github.com/xdp-project/bpf-examples/tree/master/AF_XDP-example
https://github.com/xdp-project/bpf-examples/tree/master/AF_XDP-example
https://github.com/FraudBuster/dpdk-burst-replay
https://github.com/FraudBuster/dpdk-burst-replay
http://dx.doi.org/10.1109/infcom.2012.6195638
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com/
https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com/
https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com/
http://dx.doi.org/10.1109/MASCOTS.2006.11
http://dx.doi.org/10.1109/ICDCS.2019.00180
https://doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3098822.3098830
http://dx.doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3098822.3098830
http://dx.doi.org/10.1145/3098822.3098830
https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://www.usenix.org/conference/atc20/presentation/zhang-feng
http://dx.doi.org/10.1109/TPDS.2021.3066407
http://dx.doi.org/10.1109/TPDS.2021.3066407
http://dx.doi.org/10.1145/3387514.3406214

	Introduction
	Data Stream Processing and WindFlow
	WindFlow for Network Analytics

	NIC-Accelerated Streaming Analytics
	Netronome Agilio CX 2X40Gbps SmartNIC
	Challenges
	Resource constraints
	Feature constraints
	Handling window-based operators

	Offloading WindFlow graph to Netronome
	Overview of offloaded operators

	Use Cases
	Flow Meter
	Port Scan Detection
	SYN Flood Detection

	Experimental evaluation
	Maximum throughput
	Raw tuple-generation test
	Use cases

	Related Work
	Conclusions

